Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Требования к зонной структуре полупроводников
Эффект Ганна наблюдается главным образом в двухдолинных полупроводниках, зона проводимости которых состоит из одной нижней долины и нескольких верхних долин [32, 33]. Для того, чтобы при переходе электронов между долинами возникало отрицательное дифференциальное сопротивление, должны выполняться следующие требования:
Из изученных и применяемых полупроводниковых материалов перечисленным требованиям наиболее соответствует арсенид галлия n ‑типа. Рассмотрим междолинный переход электронов в арсениде галлия. Приложим к однородному образцу из арсенида галлия электрическое поле. Если напряженность поля в образце мала, то все электроны находятся в нижней долине зоны проводимости (в центре зоны Бриллюэна). Поскольку средняя тепловая энергия электронов значительно меньше энергетического зазора между дном верхней и нижней долин зоны проводимости, они не переходят в верхнюю долину (рис. 8.1). Рис. 8.1. Схематическая диаграмма, показывающая энергию электрона в зависимости от волнового числа в области минимумов зоны проводимости арсенида галлия n ‑типа Электроны нижней долины имеют малую эффективную массу m 1* и высокую подвижность μ 1. Плотность тока, протекающего через образец, определяется концентрацией электронов в нижней долине n 1 (n 1 = n 0, где n 0 – равновесная концентрация электронов в полупроводнике): . (8.1) Увеличим приложенное электрическое поле. С ростом поля возрастает скорость дрейфа электронов. На длине свободного пробега l электроны приобретают энергию eEl, отдавая при столкновениях с фононами кристаллической решетки меньшую энергию. Когда напряженность поля достигает порогового значения E П, появляются электроны, способные переходить в верхнюю долину зоны проводимости. Дальнейшее увеличение поля приводит к росту концентрации электронов в верхней долине. Переход из нижней долины в верхнюю сопровождается значительным ростом эффективной массы и уменьшением подвижности, что ведет к уменьшению скорости дрейфа. При этом на вольт‑амперной характеристике образца появляется участок с отрицательным дифференциальным сопротивлением (ОДС) (рис. 8.2). Рис. 8.2. N ‑образная вольт‑амперная характеристика: E – электрическое поле, создаваемое приложенной разностью потенциалов; J – плотность тока Для возникновения отрицательного дифференциального сопротивления необходим одновременный переход большинства электронов из центральной долины в боковую при пороговой напряженности электрического поля (рис. 8.3). Но получить статическую ВАХ, соответствующую сплошной кривой, не удается, так как в кристалле или около невыпрямляющих контактов всегда есть неоднородности, в результате чего возникают локальные напряженности электрического поля, превышающие среднюю напряженность. Превращение в этих местах «легких» электронов в «тяжелые» еще больше увеличивает неоднородность электрического поля. Поэтому практически не получается одновременного перехода большинства электронов в кристалле из центральной долины в боковую и статическая ВАХ остается без участка с ОДС. Рис. 8.3. Распределение электронов при различных значениях напряженности поля Date: 2015-05-05; view: 486; Нарушение авторских прав |