Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Зонная диаграмма и токи диодного тиристора в открытом состоянии
В открытом состоянии (α – велики) все три перехода смещены в прямом направлении. Это происходит вследствие накопления объемных зарядов в базах n 2, p 2 тиристора. Действительно, при больших значениях коэффициента передачи α 2 электроны, инжектированные из n 2‑эмиттера в р 2‑базу, диффундируют к р‑n переходу коллектора П3, проходят его и попадают в n 1‑базу. Дальнейшему прохождению электронов по тиристорной структуре препятствует потенциальный барьер эмиттерного перехода П1. Поэтому часть электронов, оказавшись в потенциальной яме n 1‑базы, образует отрицательный избыточный заряд. Инжектированные дырки из эмиттера р 1 в базу n 1 диффундируют к р‑n переходу коллектора П3, проходят через него и попадают в базу р 2. Дальнейшему их продвижению препятствует потенциальный барьер эмиттерного перехода П2. Следовательно, в базе р 2 происходит накопление избыточного положительного заряда. В результате накопления избыточного положительного заряда в базе р 2 и отрицательного заряда в базе n 1 переход П3 смещается в прямом направлении, происходит резкое увеличение тока и одновременное уменьшение падения напряжения на тиристоре. На рисунке 7.7 приведена зонная диаграмма тиристора с накопленным объемным зарядом в обеих базах n 1 и р 2. Величина падения напряжения в прямом участке ВАХ составляет прямое напряжение на трех прямо смещенных p‑n переходах и имеет величину порядка 1‑2 вольт. Зонная диаграмма тиристора в открытом состоянии имеет вид, приведенный на рисунке 7.7, когда на всех p‑n переходах прямое смещение, на П1 и П2 за счет внешнего напряжения, и на П3 за счет объемных зарядов в базах Б1 и Б2. Рис. 7.7. Зонная диаграмма и токи тиристора в открытом состоянии (везде прямое смещение) Таким образом, тиристор имеет два устойчивых состояния: малый ток, большое напряжение, высокое сопротивление и большой ток, малое напряжение, малое сопротивление. Переход тиристора из «закрытого» в «открытое» состояние связан с накоплением объемного заряда в базах Б1 и Б2 из-за роста значения коэффициента передачи эмиттерного тока α и коэффициента умножения М. То есть рост α, М с ростом тока J и напряжения V G в тиристоре является причиной перехода тиристора из состояния “закрытого” в состояние “открытого”. В открытом состоянии тиристор находится до тех пор, пока за счет проходящего тока поддерживаются избыточные заряды в базах, необходимые для понижения высоты потенциального барьера коллекторного перехода до величины, соответствующей прямому его включению. Если же ток уменьшить до значения I у, то в результате рекомбинации избыточные заряды в базах уменьшатся, р‑n переход коллектора окажется включенным в обратном направлении, произойдет перераспределение падений напряжений на р‑n переходах, уменьшатся коэффициенты передачи α и тиристор перейдет в закрытое состояние. Таким образом, тиристор в области прямых смещений (прямое включение) является бистабильным элементом, способным переключаться из закрытого состояния с высоким сопротивлением и малым током в открытое состояние с низким сопротивлением и большим током, и наоборот. 7.5. Зависимость коэффициента передачи α от тока эмиттера Как уже отмечалось ранее, зависимость коэффициента передачи эмиттерного тока α от напряжения, приложенного к тиристору, является причиной переключения тиристора. Рассмотрим, какие физические механизмы могут обеспечить такую зависимость. В области малых токов основная причина зависимости α от тока I связана с рекомбинацией в эмиттерном переходе. При наличии рекомбинационных центров в области пространственного заряда эмиттерного перехода прямой ток такого перехода в области малых прямых смещений – рекомбинационный J рек. Зависимость этого тока от напряжения экспоненциальная, но показатель экспоненты в два раза меньше, чем для диффузионного тока J pD. Напомним, что эти процессы подробно рассматривались в разделе 4.3.2. По мере роста прямого напряжения на p‑n переходе диффузионная компонента тока J pD начинает превалировать над рекомбинационной. В терминах эффективности эмиттера это эквивалентно возрастанию эффективности эмиттера, а следовательно, и увеличению коэффициента передач α = γ·κ. На рисунке 7.6 показана зонная диаграмма эмиттерного перехода, которая иллюстрирует конкуренцию двух токов – рекомбинационного и диффузионного в токе эмиттера, а на рисунке 7.8 – типичная зависимость коэффициента передачи α от тока эмиттера I э при наличии рекомбинационных центров в ОПЗ p‑n перехода. Рис. 7.8. Типичная зависимость коэффициента передачи α от тока эмиттера I э при наличии сильной рекомбинации в ОПЗ p‑n переходов 7.6. Зависимость коэффициента М от напряжения V G. Умножение в коллекторном переходе Другой физический механизм, приводящий к накоплению объемных зарядов в базах тиристора, связан с лавинным умножением в коллекторном переходе. При больших значениях обратного напряжения на p‑n переходе величина электрического поля Е в области пространственного заряда может приблизиться к значению, соответствующему напряжению лавинного пробоя. В этом случае на длине свободного пробега λ электрон или дырка набирают энергию qλE, большую, чем ширина запрещенной зоны полупроводника qλE > Е g, и вызывают генерацию новой электронно‑дырочной пары. Это явление аналогично лавинному пробою в стабилитронах. Если М – коэффициент ударной ионизации, определяемый как количество носителей, рожденных при лавинном умножении одной частицей, то М описывается эмпирической формулой: , (7.6) где U М – напряжение лавинного пробоя, а значения коэффициента n для Ge, Si равно 3. Таким образом, умножение в коллекторе может служить причиной накопления объемных зарядов в базах тиристора. С формальной точки зрения, умножение в коллекторе эквивалентно росту коэффициента передачи и величине коллекторного тока. Таким образом, возвращаясь к вольт‑амперной характеристике тиристора, приведенной на рисунке 4.2, можно отметить следующие особенности различных участков ВАХ в области прямых смещений. В состоянии «закрыто», по мере роста напряжения на тиристоре 1-2, в последнем растут коэффициенты передачи эмиттерного тока α или коэффициент умножения M в коллекторном переходе. В точке переключения 2 выполняется условие M (α 1 + α 2) = 1, и начинается процесс накопления объемных зарядов в базах тиристора. Участок с отрицательным дифференциальным сопротивлением 2-3, не наблюдаемый на статических ВАХ, как раз связан с формированием этого объемного заряда в базах тиристора. Время накопления заряда и есть время переключения тиристора из состояния «закрыто» в состояние «открыто». Участок 3-4 характеризует открытое состояние тиристора. На этом участке все три p-n перехода смещены в прямом направлении и сопротивление тиристора мало и составляет десятки Ом. Date: 2015-05-05; view: 640; Нарушение авторских прав |