Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Физические явления, ограничивающие микроминиатюризацию





Анализ показывает, что наряду с тенденцией уменьшения геометрических размеров каждого элемента в схемах проявляется тенденция к увеличению числа элементов в схеме. Если в начале 1960‑х годов число элементов в схеме составляло десятки, то в начале 2000‑х годов число элементов в схеме составляет сотни миллионов. Обращает на себя внимание тот факт, что в настоящее время плотность упаковки приближается к пределу, обусловленному физическими ограничениями [32].

Проблемы, связанные с физическими ограничениями микроминиатюризации, требуют рассмотрения основных физических явлений, которые запрещают дальнейшее уменьшение линейных геометрических размеров транзисторов, напряжений и токов транзистора, ограничивают его быстродействие и плотность упаковки. В таблице 5 перечислены предельно допустимые значения параметров и основные физические ограничения.

 

Таблица 5. Физические ограничения микроминиатюризации

Величина параметра Физическое ограничение
Минимальная величина одного элемента (100x100) нм Статистические флуктуации легирования подложки, разрешение фоторезиста, космические лучи и радиоактивность, конечная ширина p‑n перехода
Минимальная толщина подзатворного изолятора 50 Å Туннельные токи через подзатворный диэлектрик из затвора в канал
Минимальное напряжение питания 0,025 В Тепловой потенциал kT/q
Минимальная плотность тока 10-6 А/см2 Дискретность заряда электрона, флуктуации встроенного заряда
Минимальная мощность 10-12 Вт/элемент при f = 1 кГц Шумы, тепловая энергия, диэлектрическая постоянная
Предельное быстродействие 0,03 нс Скорость света
Максимальное напряжение питания Пробой подзатворного диэлектрика, смыкание областей истока и стока
Максимальное легирование подложки Туннельный пробой p-n перехода стока
Максимальная плотность тока Электромиграция, падение напряжения на паразитных сопротивлениях контактов
Максимальная мощность Теплопроводность подложки и компонентов схемы
Количество элементов на кристалл 108 Совокупность всех ранее перечисленных ограничений

 



Минимальную длину канала ограничивает эффект, связанный со смыканием областей истока и стока при приложении напряжения к стоку VDS. Поскольку ширина lоб p‑n перехода, смещенного в обратном направлении, равна

, (6.104)

то минимальная длина канала должна быть больше удвоенной ширины p‑n перехода Lmin > 2lоб и быть прямо пропорциональна корню квадратному от напряжения питания и обратно пропорциональна корню квадратному от уровня легирования подложки.

На рисунке 6.23 приведена зависимость Lmin от концентрации легирующей примеси NA, толщины окисла dox и напряжения питания Vпит, рассчитанная по (6.104). Отсюда видно, что при толщине окисла dox = 100 Å и концентрации акцепторов NA = 1017 см-3 возможно создание МОП‑транзистора с длиной канала L = 0,4 мкм при напряжении питания 1-2 В. Дальнейшее увеличение легирующей концентрации в подложке может привести к туннельному пробою p+‑n+ перехода.

 

Рис. 6.23. Минимальная длина канала L, определяемая физическими ограничениями, в зависимости от напряжения питания, толщины окисла и уровня легирования

 

На рисунке 6.24 показана зависимость напряжения пробоя такого перехода от легирующей концентрации в подложке.

Минимальную толщину подзатворного диэлектрика ограничивает сквозной ток через диэлектрик затвора. Считая ток туннельным и используя для тока выражение Фаулера – Нордгейма для туннелирования через треугольный потенциальный барьер, получаем, что для толщины dox > 50 Å плотность тока пренебрежимо мала. Предельное быстродействие определяется временем пролета носителей через канал при длине канала L = 1 мкм, скорости дрейфа, равной скорости света, и составляет τ = 0,03 нс. Очевидно, что минимальное напряжение питания не может быть менее kT/q из-за флуктуаций тепловой энергии.

Рис. 6.24. Зависимость напряжения пробоя p‑n+ перехода стока от концентрации легирующей примеси в подложке NA

6.19. Размерные эффекты в МДП‑транзисторах

Если рассмотреть соотношения между геометрическими размерами МДП‑транзистора и параметрами области пространственного заряда, то обращает на себя внимание тот факт, что в этих соотношениях отсутствует знак «много больше». Действительно, длина и ширина канала сравнимы с толщиной обедненной области и толщиной подзатворного диэлектрика, величина области отсечки – с длиной канала транзистора. Поэтому можно ожидать, что вольт‑амперные характеристики такого МДП‑транзистора и его основные параметры (подвижность μn и пороговое напряжение VT) будут отличаться от соответствующих параметров и характеристик МДП-транзистора с большими размерами.

Для точного рассмотрения ВАХ МДП‑транзистора с малыми размерами необходимо решать двухмерное уравнение Пуассона. Поверхностный потенциал ψ в этом решении будет зависеть не только от координаты y вдоль канала, но и от координаты z вглубь и координаты х поперек канала. Точное решение двух‑ и трехмерного уравнения Пуассона возможно только численными методами. Затем, используя для плотности тока выражение (6.43) и проводя численное интегрирование этого уравнения, получают вольт‑амперные характеристики.



Однако некоторые эффекты, связанные с уменьшением размеров транзисторов, можно описать качественно на языке изменения порогового напряжения и подвижности. Рассмотрим, как изменяется пороговое напряжение VT при изменении длины канала L.

На рисунке 6.25 приведена схема МДП‑транзистора с малой длиной канала (длина канала L сравнима с шириной обедненной области p‑n перехода). Как видно из рисунка 6.25, в этом случае часть заряда в обедненной области под затвором экранируется сильнолегированными областями истока и стока.

Рис. 6.25. Модель МОП ПТ, учитывающая эффект короткого канала

Этот эффект приводит к тому, что заряд на металлическом затворе, необходимый для создания обедненного слоя, уменьшается, следовательно, уменьшается и пороговое напряжение VT. Как видно из геометрического рассмотрения, при аппроксимации формы заряда в обедненной области трапецией эффективный заряд в области обеднения будет равен:

, (6.105)

где l, QB – ширина и заряд обедненной области, определенные ранее, xJ – глубина p‑n+ перехода.

Уменьшение порогового напряжения, согласно (6.104), будет возрастать с уменьшением длины канала L, уменьшением легирования NA и увеличением напряжения смещения канал-подложка VSS (в последних случаях увеличивается ширина области обеднения l ). На рисунке 6.26 приведены экспериментальные и расчетные изменения величины порогового напряжения ΔVT за счет уменьшения длины канала.

Рис. 6.26. Изменение порогового напряжения ΔVT как функция длины L и ширины W канала МОП ПТ

При уменьшении ширины канала наблюдается противоположный эффект. На рисунке 6.27 приведен поперечный разрез МДП‑транзистора с узким каналом. В этом случае напряжение на затворе формирует тонкую обедненную область под толстым диэлектриком и толстый обедненный слой под тонким диэлектриком. В отличие от идеального случая в реальном случае граница обедненной области имеет форму, близкую к параболической. При увеличении напряжения на затворе VGS возрастают обедненная область под толстым окислом у МДП‑транзистора с узким каналом, эффективный заряд QВ эф в области обеднения и, следовательно, пороговое напряжение.

Рис. 6.27. Модель МОП ПТ, учитывающая эффект узкого канала

Чем больше соотношение толщин между толстым и тонким окислом, тем больше область перехода и тем выше пороговое напряжение. Чем уже канал, тем больше изменения порогового напряжения. В пределе, когда ширина канала стремится к нулю, пороговое напряжение приближается к пороговому напряжению для структур с толстым окислом.

При одновременном уменьшении геометрических размеров обе ранее обсужденные тенденции работают в противоположных направлениях. Эффект, связанный с уменьшением ширины, доминирующий, и обычно на практике наблюдается увеличение порогового напряжения при пропорциональном сокращении геометрических размеров.

На величину подвижности носителей μn в канале в основном влияет уменьшение длины канала. В этом случае возрастает величина тянущего электрического поля, происходят разогрев носителей и уменьшение подвижности μn.

Величина подвижности μn равна:

, (6.106)

где μn – подвижность электронов в МДП‑транзисторах с длинным каналом.

Множитель α, определенный экспериментально, составил α = 0,35 мкм.

Вольт‑амперные характеристики МДП‑транзисторов с минимальными размерами удовлетворительно описывались основными соотношениями (6.10) и (6.12) с учетом поправок на пороговое напряжение и подвижность.







Date: 2015-05-05; view: 362; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию