Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Оценивание модели





Оценки параметров. Если значения вычисляемой t -статистики не значимы, соответствующие параметры в большинстве случаев удаляются из модели без ущерба подгонки.

Другой критерий качества. Другой обычной мерой надежности модели является сравнение прогноза, построенного по урезанному ряду с «известными (исходными) данными».

Однако качественная модель должна не только давать достаточно точный прогноз, но быть экономной и иметь независимые остатки, содержащие только шум без систематических компонент (в частности, АКФ остатков не должна иметь какой-либо периодичности). Поэтому необходим всесторонний анализ остатков. Хорошей проверкой модели являются: (a) график остатков и изучение их трендов, (b) проверка АКФ остатков (на графике АКФ обычно отчетливо видна периодичность).

Анализ остатков. Если остатки систематически распределены (например, отрицательны в первой части ряда и примерно равны нуля во второй) или включают некоторую периодическую компоненту, то это свидетельствует о неадекватности модели. Анализ остатков чрезвычайно важен и необходим при анализе временных рядов. Процедура оценивания предполагает, что остатки не коррелированы и нормально распределены.

Ограничения. Следует напомнить, что модель АРПСС является подходящей только для рядов, которые являются стационарными (среднее, дисперсия и автокорреляция примерно постоянны во времени); для нестационарных рядов следует брать разности. Рекомендуется иметь, как минимум, 50 наблюдений в файле исходных данных. Также предполагается, что параметры модели постоянны, т. е. не меняются во времени.







Date: 2015-11-15; view: 374; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию