Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Решение систем методом Гаусса





Одним из наиболее универсальных и эффективных методов решений систем линейных уравнений является метод Гаусса, состоящий в последовательном исключении неизвестных.

Пусть дана система уравнений

(1.25)

Процесс решения по методу Гаусса состоит из двух этапов. На первом этапе (прямой ход) система приводится к ступенчатому (треугольному или трапециевидному) виду. Для этого над строками расширенной матрицы системы проводятся элементарные преобразования, приводящие эту матрицу к ступенчатому виду. Полученная матрица будет эквивалентной матрице , значит и система уравнений, полученная с помощью новой матрицы будет равносильной данной системе уравнений.

Если в процессе приведения системы (1.25) к ступенчатому виду появятся нулевые уравнения, то есть равенства вида 0=0, их отбрасывают. Если же появится уравнение вида , а то это говорит о том, что данная система уравнений несовместна.

Второй этап (обратный ход) заключается в решении ступенчатой системы. Если в последнем уравнении новой системы содержится одно неизвестное, то исходная система имеет единственное решение. Из последнего уравнения находим , из предпоследнего уравнения , далее поднимаясь по системе вверх, найдем все остальные неизвестные , . Если в последнем уравнении преобразованной системы более чем одно неизвестное, то данная система имеет множество решений (система является неопределенной). Из последнего уравнения выражаем первое неизвестное через остальные неизвестные . Затем подставляем значение в предпоследнее уравнение системы и выражаем через и так далее. Придавая свободным неизвестным произвольные значения, получим бесчисленное множество решений системы. На практике удобно, чтобы коэффициент был равен 1 (уравнения переставить местами, либо разделить обе части первого уравнения на ).

Пример 37. Решить систему уравнений методом Гаусса:

Решение. Составим расширенную матрицу данной системы

Так как , , поменяем местами первую и вторую строки матрицы местами:

~ .

Сначала элементы первой строки умножим на (-2) и прибавим к соответствующим элементам второй строки, а затем элементы первой строки умножим на (-7) и прибавим к элементам третьей строки:

~ .

Элементы второй строки умножим на , а элементы третьей строки – на :

~ .

От элементов третьей строки отнимаем элементы второй строки:

~ .

От преобразованной расширенной матрицы перейдем к системе уравнений:

Получили систему, состоящую из двух уравнений и содержащую три неизвестных, то есть с помощью элементарных преобразований данную систему уравнений привели к ступенчатому виду, в которой нет уравнений вида , где . Поэтому система уравнений имеет бесчисленное множество решений. Выразим через из второго уравнения:

Подставим полученное выражение в первое уравнение:

Пусть , тогда - частное решение системы.

Пусть , где с – любое действительное число, тогда

- общее решение системы.

 

Пример 38. Решить систему уравнений методом Гаусса

Решение. Составим расширенную матрицу данной системы уравнений

Элементы первой строки умножим на (-2) и прибавим к элементам второй строки, затем элементы первой строки умножим на (-7) и прибавим к элементам третьей строки:

~ .

Элементы второй строки умножим на (-3) и прибавим к элементам третьей строки:

~ .

Элементы третьей строки умножим на :

~ .

С помощью элементарных преобразований получили матрицу треугольного вида, значит, данная система уравнений имеет единственное решение.

С помощью полученной преобразованной расширенной матрицы запишем соответствующую систему уравнений

Зная значение , из второго уравнения находим :

или

Используя значения и , из первого уравнения находим :

или окончательно

Date: 2015-12-10; view: 215; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию