Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Математическая формулировка
Есть список объектов или видов объектов (товаров) T1, T2... Tn и есть некоторый измеримый результат (прибыль), который является аддитивной функцией от объектов (общая прибыль является суммой прибылей от всех товаров), R(T1,T2...Tn)=R(T1)+R(T2)+…R(Tn). Так вот, принцип Парето гласит: (1) Существует такое число 0< a <0,5, что объекты можно разбить на две группы M1 и M2 так, что численность группы M1 будет равна a *n, а результат R(M1)=(1– a)*R(M1,M2), т.е. 1- a от общего результата всех объектов, (2) и при этом a =0,2 (20%). В такой формулировке видно, что принцип Парето распадается на две части – наличие точки кососимметричности a (точки Парето), и утверждения о значении этой точки a =0,2. Докажем сначала первую часть – что точка Парето существует. Рассмотрим гистограмму результатов по объектам, предварительно упорядочив по убыванию результата. А теперь построим гистограмму накопленного результата и приблизим ее непрерывным графиком.
В дальнейших рассуждениях мы будем рассматривать непрерывный график результата, т.е. считаем, что объектов у нас очень много (пример – население страны, несколько тысяч товаров супермаркета). Итак, y=f(x) – график результата, линия красного цвета. График построен в безразмерных единицах – 1 по оси абсцисс соответствует полная совокупность объектов, 100% от их количества; 1 по оси ординат соответствует суммарный результат от полного набора объектов. Где же должна лежать точка Парето? – На прямой y=1–x, именно это равенство выражает искомую кососимметричность, толстая прямая синего цвета. Их пересечение дает искомую точку Парето, точку a, такую, что f(a)=1– a. График y=f(x) строго возрастает, более того – это выпуклая функция (вспоминаем, что объекты мы упорядочивали по убыванию результата, т.е. производная убывает). Отсюда следует, что график функции результата всегда лежит выше прямой y=x (зеленая прямая) и совпадает с ней в одном случае – когда все объекты имеют одинаковый результат, равномерное распределение. Тем самым мы доказали, что искомая точка Парето всегда существует, ее значение меньше 0,5 и равно ему в единственном случае – равномерного распределения результата по объектам. Из этого графика видно, как мы можем итерационно продолжить Парето-анализ. Если мы рассмотрим ограничение функции на интервале (0, a), то можем построить точку Парето второго порядка (тот же красный график и тонкая синяя прямая; точка Парето-2 показана пунктиром). Аналогично можем поступить на интервале (a, 1) и так далее. Date: 2015-11-15; view: 407; Нарушение авторских прав |