Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Лекция 1 Вычисление определенных интегралов численными методами
План лекции: 1. Вычисление определенных интегралов методом левых, правых и средних прямоугольников. 2. Вычисление определенных интегралов методом трапеций.
Определенный интеграл от непрерывной функции f (х) ³ 0 в пределах от а до b представляет площадь криволинейной трапеции S, ограниченной кривой f (x), осью абсцисс и прямыми х = а, х = b (рисунок 1). Из курса высшей математики известно, что
где F (x) – первообразная для f(х) на отрезке [ а, b ], т. е. F ¢(x) = f (х)на отрезке [ a, b ]. Если f(х) < 0 на отрезке [ a, b ], то в формуле S < 0, но ç S çравно площади криволинейной трапеции, находящейся под осью абсцисс.
Однако на практике приведенной формулой часто нельзя воспользоваться по двум основным причинам: 1) вид функции f (x) не допускает непосредственного интегрирования, т. е. первообразную нельзя выразить в элементарных функциях; 2) значения функции f (x) заданы только на фиксированном конечном множестве точек xi, т. е. функция задана в виде таблицы. В этих случаях используются методы численного интегрирования. Они основаны на аппроксимации подынтегральной функции некоторыми более простыми выражениями, например многочленами нулевой (у = с), первой (у = сх + d) или второй (у = сx 2 + dх + k) степени, а численные методы вычисления определенного интеграла, основанные на подобной аппроксимации, называются соответственно методами прямоугольников, трапеций и Симпсона (парабол). Пусть требуется приближенно вычислить значение интеграла Различают методы правых, левых и средних прямоугольников, в зависимости от месторасположения начальной точки x 0 при вычислении площади элементарного прямоугольника. Если за высоту каждого прямоугольника принимается левая ордината (y0, y1, y2…), то вычисление интеграла будет производиться по методу левых прямоугольников; если правая ордината (y 1, y 2, y 3…), то по методу правых прямоугольников; если за высоту принимается середина интервала длиной h, то будет применяться метод средних прямоугольников. Основанием всех прямоугольников будет являться величина шага интегрирования h. Тогда при методе левых прямоугольников:
при методе правых:
при методе средних:
Таким образом, первоначальное значение
Рисунок 2 – Схема алгоритма вычисления интеграла методом прямоугольников
Более точное значение интеграла получается при вычислении его методом трапеций, когда ординаты (y 0, y 1, y 2… yn) подынтегральной функции соединяют отрезками прямых и искомую площадь заменяют суммой площадей трапеций, высотой которых является шаг h, а основаниями Тогда
где Поскольку
Рисунок 3 – Схема алгоритма вычисления интеграла методом трапеций Date: 2015-10-19; view: 913; Нарушение авторских прав |