![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Проверка гипотезы равенства двух выборочных дисперсий
Пусть имеются две выборки из нормальной совокупности. Объем каждой выборки равен n1 и n2. Дисперсии этих выборок соответственно равны
В числителе всегда ставится наибольшее значение из двух наблюденных дисперсий. Для этого отношения найден закон распределения его в бесконечной совокупности случайных независимых выборок из нормальной совокупности. Для проверки нашей гипотезы необходимо вычислить наблюденное значение Если окажется, что наблюденное значение Тн равно или больше табличного Т (Тн ³ Т), то такое значение Тн в выборках из нормальной совокупности можно встретить лишь с вероятностью не более той, которая принята в качестве доверительного уровня. Если пользоваться данными таблицы приложения 6, то такой вероятностью является Р = 0,05. Так как эта вероятность очень мала, то по принципу практической невозможности маловероятных явлений надо считать, что наблюденное значение Тн отличается от табличного не случайно, а существенно, и поэтому наша гипотеза должна быть забракована. Если же окажется, что Тн < Т, то гипотеза принимается. Случай выборок не из нормальной совокупности. Если выборки берутся из совокупностей, незначительно отличающихся от нормальных, то для сравнения дисперсий можно пользоваться критерием Т. Но если совокупность имеет распределение, значительно отличающееся от нормального, то можно сравнивать дисперсии только для больших выборок. В этом случае за критерий оценки может быть взято отношение Если это отношение ts ³ 3, то расхождение между дисперсиями существенно; если ts < 3 — расхождение несущественно. Date: 2015-10-19; view: 482; Нарушение авторских прав |