Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Примеры вычисления работы силы





Работа силы в общем случае зависит от характера движения точки приложения силы. Следовательно, для вычисления работы надо знать движение этой точки. Но в природе имеются силы и примеры движения, для которых работу можно вычислить сравнительно просто, зная начальное и конечное положение точки.

Работа силы тяжести. Силу тяжести материальной точки массой вблизи поверхности Земли можно считать постоянной, равной , направленной по вертикали вниз. Если взять оси координат , где ось направлена по вертикали вверх, то

, (ПЖ.10)

где – высота опускания точки.

При подъеме точки высота является отрицательной. Следовательно, в общем случае работа силы тяжести равна

. (ПЖ.11)

Если имеем систему материальных точек, то для каждой точки с массой будем иметь работу ее силы тяжести

,

где – начальная и конечная координаты точки.

Работа всех сил тяжести системы материальных точек

, (ПЖ.12)

где – масса системы точек; и – начальная и конечная координаты центра масс системы точек. Вводя обозначение для изменения высоты центра масс , имеем

. (ПЖ.12')

Работа линейной силы упругости. Линейной силой упругости (или линейной восстанавливающей силой) называют силу, действующую по закону Гука:

,

где – расстояние от точки равновесия, где сила равна нулю, до рассматриваемой точки ; – постоянный коэффициент жесткости.

. (ПЖ.13)

По этой формуле вычисляют работу линейной силы упругости пружины при перемещении по любому пути из точки , в которой ее удлинение (начальная деформация) равно , в точку , где деформация соответственно равна . В новых обозначениях (ПЖ.13) принимает вид

. (ПЖ.13')

Работа силы, приложенной к твердому телу:

1) При поступательном движении твердого тела все точки тела имеют одинаковые по модулю и направлению скорости. Следовательно, если сила приложена к точке , то, так как ,

, (ПЖ.14)

где – радиус-вектор произвольной точки твердого тела. На каком-либо перемещении полная работа

. (ПЖ.15)

2) При вращении твердого тела вокруг неподвижной оси скорость точки можно вычислить по векторной формуле Эйлера:

,

тогда элементарную работу силы определим по формуле

. (ПЖ.16)

Таким образом, элементарная работа силы, приложенной к какой-либо точке тела, вращающегося вокруг неподвижной оси, равна произведению момента силы относительно оси вращения на дифференциал угла поворота тела.

Полная работа

. (ПЖ.17)

В частном случае, если момент силы относительно оси вращения является постоянным, т. е. , работу определяют по формуле

. (ПЖ.18)

3) Для свободного тела в общем случае движения скорость точки , в которой приложена сила ,

,

следовательно,

. (ПЖ.19)

Таким образом, элементарная работа силы, приложенной в какой-либо точке твердого тела, в общем случае движения складывается из элементарной работы на элементарном поступательном перемещении вместе с какой-либо точкой тела и на элементарном вращательном перемещении вокруг этой точки.

В случае вращения твердого тела вокруг неподвижной точки, выбрав эту точку за полюс , для элементарной работы имеем

. (ПЖ.20)

Поворот на угол следует рассматривать в каждый момент времени вокруг своей мгновенной оси вращения.

Работа внутренних сил твердого тела. Для твердого тела сумма работ внутренних сил равна нулю при любом его перемещении.







Date: 2015-09-24; view: 642; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.01 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию