Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Микроциркуляция





В микроциркуляторном русле осуществляется транспорт веществ через стенку капилляров, в результате чего клетки органов и тканей обмениваются с кровью теплом, водой и другими веществами, образуется лимфа.

Транскапиллярный обмен веществ происходит путём диффузии, облегчённой диффузии, фильтрации, осмоса и трансцитоза. Интенсивность всех этих процессов, разных по физико-химической природе, зависит от объёма кровотока в системе микроциркуляции (величина его может возрастать за счёт увеличения количества функционирующих капилляров, т.е. площади обмена, и линейной скорости кровотока), а также определяется проницаемостью обменной поверхности. Обменная поверхность капилляров гетерогенна по своему строению: она состоит из чередующихся белковой, липидной и водной фаз. Липидная фаза представлена почти всей поверхностью эндотелиальной клетки, белковая — переносчиками и ионными каналами, водная — межэндотелиальными порами и каналами, имеющими разный диаметр, а также фенестрами (окнами) эндотелиоцитов. Эффективный радиус водных пор и каналов определяет размер водорастворимых молекул, которые могут проходить через них свободно, ограничено или вообще не проходить, т.е. проницаемость капилляров для разных веществ неодинакова. Свободно диффундирующие вещества быстро переходят в ткани, и диффузионное равновесие между кровью и тканевой жидкостью достигается уже в начальной (артериальной) половине капилляра. Для ограниченно диффундирующих веществ требуется большее время установления диффузионного равновесия, и оно либо достигается на венозном конце капилляра, или не устанавливается вообще. Поэтому для веществ, транспортируемых только диффузией, имеет большое значение линейная скорость капиллярного кровотока. Если скорость транскапиллярного транспорта веществ (чаще — диффузии) меньше, чем скорость кровотока, то вещество может выноситься с кровью из капилляра, не успев вступить в диффузионное равновесие с жидкостью межклеточных пространств. При определённой величине скорости кровоток может лимитировать количество перешедшего в ткани или, наоборот, выводимого из тканей вещества. Поток свободно диффундирующих веществ в основном зависит от площади поверхности обмена, т.е. от количества функционирующих капилляров, поэтому транспорт свободно диффундирующих веществ может ограничиваться при снижении объемной скорости кровотока. Та часть объема кровотока, из которой в процессе транскапиллярного перехода извлекаются вещества, называется нутритивным кровотоком, остальной объём — шунтовым кровотоком (объем функционального шунтирования).



Для характеристики гидравлической проводимости капилляров используют коэффициент капиллярной фильтрации. Его выражают количеством миллилитров жидкости, которое фильтруется в течение 1 мин в 100 г ткани в расчете на 1 мм рт.ст. фильтрационного давления.

Фильтрационное давление (ФД) обеспечивает фильтрацию жидкости в артериальном конце капилляра, в результате чего она перемещается из капилляров в интерстициальное пространство. ФД является результатом взаимодействия разнонаправленных сил: способствуют фильтрации гидростатическое давление крови (ГДк = 30 мм рт.ст.) и онкотическое давление тканевой жидкости (ОДт = 5 мм рт.ст.). Препятствует фильтрации онкотическое давление плазмы крови (ОДк = 25 мм рт.ст.).

Скорость кровотока в отдельных капиллярах определяют с помощью биомикроскопии, дополненной кинотелевизионным и другими методами. Среднее время прохождения эритроцита через капилляр большого круга кровообращения составляет у человека 2,5 с, в малом круге — 0,3—1 с.

1) Кровь — внутренняя среда организма, образованная жидкой соединительной тканью. Состоит из плазмы и форменных элементов: клеток лейкоцитов и постклеточных структур (эритроцитов и тромбоцитов). Циркулирует по системе сосудов под действием силы ритмически сокращающегося сердца и не сообщается непосредственно с другими тканями тела ввиду наличия гистогематических барьеров.

Свойства крови:

· Суспензионные свойства зависят от белкового состава плазмы крови, и от соотношения белковых фракций (в норме альбуминов больше, чем глобулинов).

· Коллоидные свойства связаны с наличием белков в плазме. За счёт этого обеспечивается постоянство жидкого состава крови, так как молекулы белка обладают способностью удерживать воду.

· Электролитные свойства зависят от содержания в плазме крови анионов и катионов. Электролитные свойства крови определяются осмотическим давлением крови.

Состав крови:

Кровь состоит из двух основных компонентов: плазмы и взвешенных в ней форменных элементов. У взрослого человека форменные элементы крови составляют около 40—50 %, а плазма — 50—60 %. Отношение форменных элементов крови к ее общему объему называется гематокритным числом или гематокритом. Кровь также подразделяется на периферическую (находящуюся в русле сосудов) и кровь, находящуюся в кроветворных органах и сердце.

Плазма

Плазма крови содержит воду и растворённые в ней вещества — белки и другие соединения. Основными белками плазмы являются альбумины, глобулины и фибриноген. Около 85 % плазмы составляет вода. Неорганические вещества составляют около 2-3 %; это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, PO43-, SO42-). Органические вещества (около 9 %) в составе крови подразделяются на азотсодержащие (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов) и безазотистые (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин). Также в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы).



Функции:

1. Транспортная — выполняет передвижение крови; в ней выделяют ряд подфункций:

· дыхательная — перенос кислорода от лёгких к тканям и углекислого газа от тканей к лёгким;

· питательная — доставляет питательные вещества к клеткам тканей;

· выделительная (экскреторная) — транспорт ненужных продуктов обмена веществ к легким и почкам для их выведение (экскреции) из организма;

· терморегуляторная — регулирует температуру тела, перенося тепло;

· регуляторная — связывает между собой различные органы и системы, перенося сигнальные вещества (гормоны), которые в них образуются.

2. Защитная — обеспечение клеточной и гуморальной защиты от чужеродных агентов;

3. Гомеостатическая — поддержание гомеостаза (постоянства внутренней среды организма) — кислотно-основного равновесия, водно-электролитного баланса и др.

2) Эритроциты– клетки крови человека, которые содержат в себе гемоглобин и выполняют транспорт кислорода от легких к тканям и углекислого газа от тканей к легким. Эритроциты человека имеют двояковогнутую форму, красную окраску и имеют размеры 7-8 мкм (микрометров). Продолжительность жизни эритроцитов колеблется в пределах 120 дней. Красная окраска эритроцита обусловлена гемоглобином, который составляет основную часть эритроцита.

Форма двояковогнутого диска обеспечивает прохождение эритроцитов через узкие просветы капилляров. В капиллярах они движутся со скоростью 2 сантиметра в минуту, что даёт им время передать кислород от гемоглобина к миоглобину. Миоглобин действует как посредник, принимая кислород у гемоглобина в крови и передавая его цитохромам в мышечных клетках.

Формирование эритроцитов происходит в процессе эритропоэза в красном костном мозге, где в процессе пролиферации и дифференцировки из стволовых гемопоэтических клеток образуется мегалобласт, из него образуется эритробласт, далее нормоцит. Нормоцит после потери ядра превращается в непосредственный предшественник эритроцитов – ретикулоцит. Ретикулоцит, попадая из красного костного мозга в кровеносное русло, в течение нескольких часов превращается в эритроцит.

Функции эритроцитов

· Самой главной функцией эритроцитов, обусловленной содержащимся в них гемоглобина, является дыхательная, т.е. перенос кислорода от легких к тканям и углекислого газа от тканей к легким.

· Питательная функция, осуществляет транспортировку аминокислот от органов пищеварения к тканям.

· Ферментативная. Эритроциты принимают участие в ферментативных реакциях, так как к их поверхности прикрепляются многие ферменты.

· Защитная. Эритроциты способны адсорбировать на своей поверхности токсины и антигены, а также участвовать в иммунных и аутоиммунных реакциях.

· Регуляторная. Эритроциты способствуют поддержанию кислотно-щелочного равновесия.

3) Лейкоциты— белые кровяные клетки; неоднородная группа различных по внешнему виду и функциям клеток крови человека, выделенная по признаку отсутствия самостоятельной окраски и наличия ядра.

Главная сфера действия лейкоцитов — защита. Они играют главную роль в специфической и неспецифической защите организма от внешних и внутренних патогенных агентов, а также в реализации типичных патологических процессов.

Все виды лейкоцитов способны к активному движению и могут переходить через стенку капилляров и проникать в ткани, где они поглощают и переваривают чужеродные частицы. Этот процесс называется фагоцитоз, а клетки, его осуществляющие, — фагоцитами.

Если чужеродных тел проникло в организм очень много, то фагоциты, поглощая их, сильно увеличиваются в размерах и в конце концов разрушаются. При этом освобождаются вещества, вызывающие местную воспалительную реакцию, которая сопровождается отеком, повышением температуры и покраснением пораженного участка.

Вещества, вызывающие реакцию воспаления, привлекают новые лейкоциты к месту внедрения чужеродных тел. Уничтожая чужеродные тела и поврежденные клетки, лейкоциты гибнут в больших количествах.

Количество лейкоцитов

В крови взрослого человека лейкоцитов содержится в 1000 раз меньше, чем эритроцитов, и в среднем их количество составляет 4—9·10^9/л.

Содержание лейкоцитов в крови не является постоянным, а динамически изменяется в зависимости от времени суток и функционального состояния организма. Так, количество лейкоцитов обычно несколько повышается к вечеру, после приёма пищи, а также после физического и эмоционального напряжения.

Увеличение общего абсолютного количества лейкоцитов в единице объёма выше верхней границы нормы называется абсолютным лейкоцитозом, а уменьшение её ниже нижней границы — абсолютная лейкопения.

Виды лейкоцитов

Лейкоциты различаются по происхождению, функциям и внешнему виду. Некоторые из лейкоцитов способны захватывать и переваривать чужеродные микроорганизмы (фагоцитоз), а другие могут вырабатывать антитела.

По морфологическим признакам лейкоциты делят на две группы:

· зернистые лейкоциты, или гранулоциты — клетки, имеющие крупные сегментированные ядра и обнаруживающие специфическую зернистость цитоплазмы; в зависимости от способности воспринимать красители они подразделяются на нейтрофильные, эозинофильные и базофильные;

· незернистые лейкоциты, или агранулоциты — клетки, не имеющие специфической зернистости и содержащие простое несегментированное ядро, к ним относятся лимфоциты и моноциты.

Соотношение разных видов белых клеток, выраженное в процентах, называется лейкоцитарной формулой. Существует такое понятие, как сдвиг лейкоцитарной формулы влево и вправо.

Сдвиг лейкоцитарной формулы влево — увеличение количества незрелых (палочкоядерных) нейтрофилов в периферической крови, появление метамиелоцитов (юных), миелоцитов;

Сдвиг лейкоцитарной формулы вправо — уменьшение нормального количества палочкоядерных нейтрофилов и увеличение числа сегментоядерных нейтрофилов с гиперсегментированными ядрами (мегалобластная анемия, болезни почек и печени, состояние после переливания крови).

Эозинофилы — лейкоциты, содержащие двудольчатое ядро и гранулы, которые окрашиваются эозином в красный цвет. Они регулируют аллергические реакции, их количество возрастает при аллергиях, а также в случаях заражения паразитическими червями (гельминтами).

4) Тромбоциты – это небольшие (2-4 мкм диаметром) дискообразные безъядерные клеточные фрагменты, циркулирующие в кровотоке, чутко реагирующие на повреждения сосуда и играющие критически важную роль в гемостазе и тромбозе. Тромбоциты образуются при фрагментации своих предшественников мегакариоцитов в костном мозге. Из одного мегакариоцита образуется от 5 до 10 тысяч тромбоцитов. Средняя продолжительность жизни тромбоцита составляет 5-9 дней.

Тромбоциты выполняют две основных функции:

· формирование тромбоцитарного агрегата, первичной пробки, закрывающей место повреждения сосуда;

· предоставление своей поверхности для ускорения ключевых реакций плазменного свертывания.

Уменьшение количества тромбоцитов в крови может приводить к кровотечениям. Увеличение же их количества ведет к формированию сгустков крови (тромбоз), которые могут перекрывать кровеносные сосуды и приводить к таким патологическим состояниям, как инсульт, инфаркт миокарда, легочная эмболия или закупоривание кровеносных сосудов в других органах тела.

Неполноценность или болезнь тромбоцитов называется тромбоцитопатия, которая может быть либо уменьшением количества тромбоцитов (тромбоцитопения), либо нарушением функциональной активности тромбоцитов (тромбастения), либо увеличением количества тромбоцитов (тромбоцитоз). Существуют болезни, уменьшающие число тромбоцитов, такие как гепарин-индуцированная тромбоцитопения или тромботическая пурпура, которые обычно вызывают тромбозы вместо кровотечений.

Особенностью тромбоцита является его способность к активации — быстрому и как правило необратимому переходу в новое состояние. Стимулом активации может служить практически любое возмущение окружающей среды, вплоть до простого механического напряжения. Однако основными физиологическими активаторами тромбоцитов считаются коллаген (главный белок внеклеточного матрикса), тромбин (основной белок плазменной системы свертывания), АДФ (аденозиндифосфат, появляющийся из разрушенных клеток сосуда или секретируемый самими тромбоцитами) и тромбоксан А2 (вторичный активатор, синтезируемый и выбрасываемый тромбоцитами; его дополнительная функция заключается в стимуляции вазоконстрикции).

Активированные тромбоциты становятся способны прикрепляться к месту повреждения (адгезия) и друг к другу (агрегация), формируя пробку, перекрывающую повреждение. Кроме того, они участвуют в плазменном свертывании двумя основными способами — экспонирование прокоагулянтной мембраны и секреция α-гранул.

5) Гемоглобин— сложный железосодержащий белок, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани.

Нормальным содержанием гемоглобина в крови человека считается: у мужчин 130—170 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин 120—150 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям.

Главная функция гемоглобина состоит в переносе кислорода. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Током крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается из связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких. Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (почти в 500 раз), чем кислород, образуя карбоксигемоглобин (HbCO). Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH). В обоих случаях блокируются процессы транспортировки кислорода. Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в легких.

Метгемоглобин — производное гемоглобина, в котором железо окислено (трехвалентно). Метгемоглобин не способен переносить кислород. Образуется в организме при некоторых видах отравлений.

Гемоглобин является сложным белком класса хромопротеинов, то есть в качестве простетической группы здесь выступает особая пигментная группа, содержащая химический элемент железо — гем. Гемоглобин человека является тетрамером, то есть состоит из четырёх субъединиц. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами A-H (От N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Эта простетическая группа нековалентно связана с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две других координационных позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93 положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64 положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в легких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и моноксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь моноксида углерода с гемоглобином более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с моноксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

6) Содержание белков в плазме крови составляет 6,5 - 8 г/дл. Их молекулярные веса варьируют от 44 000 до 1 300 000, а диаметр молекул - от 1 до 100 нм.

Альбумин составляет примерно 60% от общего количества белков плазмы крови, т.е. 3,5 - 4,5 г/дл. Так как концентрация альбумина высока, а размеры молекулы невелики, этот белок на 80% определяет коллоидно-осмотическое давление плазмы. Общая площадь поверхности множества молекул альбумина очень велика, и поэтому они очень хорошо подходят для выполнения функции переносчиков многих транспортируемых кровью веществ, таких как билирубин, уробилин, жирные кислоты, соли желчных кислот и некоторые экзогенные вещества: пенициллин, сульфонамиды, ртуть и др.

Глобулинами называется целая группа белков, которые могут быть разделены электорофоретически. В порядке убывания электорофоретической подвижности различают альфа-1-глобулин, альфа-2-глобулин, бета-глобулин и гамма-глобулин . Однако даже эти субфракции не состоят из однородных белков, каждую из них можно разделить при помощи других методов, например, иммуноэлектрофореза.

В составе фракции альфа-1-глобулинов мигрирует ряд конъюгированных белков, простетической группой которых являются углеводы - преимущественно гексозы и гексозамины. Эти белки называются гликопротеинами. Около 2/3 всей глюкозы плазмы циркулирует в составе гликопротеинов. Эту связанную глюкозу невозможно определить клиническими пробами на сахар в плазме, лишенной белков, она может быть измерена лишь после ее отделения от белков методом кислотного гидролиза. К субфракции гликопротеинов относится еще одна группа углеводсодержащих белков - мукопротеины , в состав которых входят мукополисахариды.

Фракция альфа-2-глобулинов включает гаптоглобины, относящиеся по химическому строению к мукопротеинам, и медьсодержащий белок церулоплазмин. На каждую молекулу его приходится 8 атомов меди, он связывает около 90% всей меди, содержащейся в плазме. К другим белкам из фракции альфа-2-глобулинам относятся тироксинсвязывающий белок, витамин В- 12-связывающий глобулин (транскобаламин ), билирубинсвязывающий глобулин и кортизолсвязывающий глобулин (транскортин ).

К бета-глобулинам относятся важнейшие белковые переносчики липидов и белковые переносчики полисахаридов. Важное значение липопротеинов состоит в том, что они удерживают в растворе нерастворимые в воде жиры и липоиды и обеспечивают тем самым их перенос кровью. Около 75% всех жиров и липоидов плазмы входят в состав липопротеинов. Кроме липопреотеинов к бета- глобулинам относится группа металсодержащих белков , один из которых - трансферин - является белком-переносчиком меди и белком-переносчиком железа . Каждая молекула трансферина содержит два атома трехвалентного железа, именно трансферин обеспечивает транспорт железа кровью.

К неоднородной группе гамма-глобулинов относятся белки с самой низкой электрофоретической подвижностью. К ним относится большинство защитных веществ крови, многие из которых обладают ферментативной активностью. Так как потребности в белках, выполняющих такие специальные функции, бывают различны, размеры и состав фракции гамма-глобулинов может значительно изменяться.

Белки плазмы крови выполняют следующие функции:

1. Питательная функция: В организме человека содержится около 3 л плазмы, в которой растворено примерно 200 г белка. Это вполне достаточный запас питательных веществ. Обычно клетки захватывают не столько белки, сколько аминокислоты, однако некоторые клетки могут захватывать белки плазмы и расщеплять их при помощи собственных внутриклеточных ферментов. Высвобождающиеся при этом аминокислоты поступают в кровь, где сразу же могут использоваться другими клетками для синтеза новых белков.

2. Транспортная функция: Многие небольшие молекулы при переносе их от кишечника или депо к месту потребления связываются со специфическими белками плазмы.

3. Роль белков в создании коллоидно-осмотического давления: Вследствие низкой молекулярной концентрации белков вклад их в общее осмотическое давление плазмы крови невелик, но создаваемое ими коллоидно- осмотическое (онкотическое) давление играет важную роль в регулировании распределения воды между плазмой и межклеточной жидкостью . Стенки капилляров свободно пропускают небольшие молекулы, поэтому концентрации этих молекул и создаваемое ими осмотическое давление примерно одинаковы в плазме и в межклеточной жидкости. Крупные молекулы белков плазмы лишь с большим трудом проходят через стенки капилляров (так, период полувыведения меченного альбумина из кровотока составляет примерно 14 часов). 4. Буфферная функция.

5. Роль белков в предупреждении кровопотери: Свертывание крови , препятствующее кровотечению, частично обусловлено наличием в плазме фибриногена . Процесс свертывания включает целую цепь реакций, в которых в качестве ферментов участвует ряд белков плазмы, и заканчивается превращением растворенного в плазме фибриногена в сеть из фибрина , образующую сгусток.

7) В жидкой части крови растворены минеральные вещества — соли. У млекопитающих их концентрация составляет около 0,9 %. Они находятся в диссоциированном состоянии в виде катионов и анионов. От содержания этих веществ зависит в основном осмотическое давление крови.

Осмотическое давление - это сила, вызывающая движение растворителя через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный. Клетки тканей и клетки самой крови окружены полупроницаемыми оболочками, через которые легко проходит вода и почти не проходят растворенные вещества. Поэтому изменение осмотического давления в крови и тканях может привести к набуханию клеток или потере ими воды. Даже незначительные изменения солевого состава плазмы крови губительны для многих тканей, и прежде всего для клеток самой крови. Осмотическое давление крови держится на относительно постоянном уровне за счет функционирования регулирующих механизмов. В стенках кровеносных сосудов, в тканях, в отделе промежуточного мозга — гипоталамусе имеются специальные рецепторы, реагирующие на изменение осмотического давления,— осморецепторы.

Раздражение осморецепторов вызывает рефлекторное изменение деятельности выделительных органов, и они удаляют избыток воды или солей, поступивших в кровь. Большое значение в этом отношении имеет кожа, соединительная ткань которой впитывает избыток воды из крови или отдает ее в кровь при повышении осмотического давления последней

Величину осмотического давления обычно определяют косвенными методами. Наиболее удобен и распространен криоскопический способ, когда находят депрессию, или понижение точки замерзания крови. Известно, что температура замерзания раствора тем ниже, чем больше концентрация растворенных в нем частиц, то есть чем больше его осмотическое давление. Температура замерзания крови млекопитающих на 0,56—0,58 °С ниже температуры замерзания воды, что соответствует осмотическому давлению 7,6 атм, или 768,2 кПа.

Определенное осмотическое давление создают и белки плазмы. Оно составляет 1/220 общего осмотического давления плазмы крови и колеблется от 3,325 до 3,99 кПа, или 0,03—0,04 атм, или 25—30 мм рт. ст. Осмотическое давление белков плазмы крови называют онкотическим давлением. Оно значительно меньше давления, создаваемого растворенными в плазме солями, так как белки имеют огромную молекулярную массу, и, несмотря на большее их содержание в плазме крови по массе, чем солей, количество их грамм-молекул оказывается относительно небольшим, к тому же они значительно менее подвижны, чем ионы. А для величины осмотического давления имеет значение не масса растворенных частиц, а их число и подвижность.

Онкотичеекое давление препятствует чрезмерному переходу воды из крови в ткани и способствует реабсорбции ее из тканевых пространств, поэтому при уменьшении количества белков в плазме крови развивайся отеки тканей.

Скорость оседания эритроцитов (СОЭ) — неспецифический лабораторный показатель крови, отражающий соотношение фракций белков плазмы; изменение СОЭ может служить косвенным признаком текущего воспалительного или иного патологического процесса. Так же этот показатель известен под названием «Реакция оседания эритроцитов», РОЭ.

Проба основывается на способности эритроцитов в лишённой возможности свёртывания крови оседать под действием гравитации. В норме величина СОЭ у женщин равняется 3—14 мм/час, а у мужчин — 3-10 мм/час.

Удельная масса эритроцитов превышает удельную массу плазмы, поэтому они медленно оседают на дно пробирки. Скорость, с которой происходит оседание эритроцитов, в основном определяется степенью их агрегации, то есть их способностью слипаться вместе. Из-за того, что при образовании агрегатов уменьшается отношение площади поверхности частиц к их объёму, сопротивление агрегатов эритроцитов трению оказывается меньше, чем суммарное сопротивление отдельных эритроцитов, поэтому скорость их оседания увеличивается.

Методика определения

Определение СОЭ проводят методом Панченкова (в капилляре Панченкова), либо методом Вестергрена (в пробирке).

По методу Панченкова

В градуированный на 100 делений капилляр Панченкова набирают до метки «Р» 5%-ый раствор цитрата натрия и переносят его на часовое стекло. Затем в тот же капилляр набирают дважды кровь до метки «К» и оба раза выдувают её на часовое стекло. Кровь, тщательно перемешанную с цитратом натрия, вновь набирают в капилляр до метки «К». Капилляр ставят в штатив строго вертикально. СОЭ учитывают через 1 час, при необходимости через 24 часа и выражают в миллиметрах. В методе Панченкова в качестве антикоагулянта используют 5% цитрат натрия. В капилляр набирают 2.5 мкл цитрата и в тот же капилляр добирают 7.5 мкл крови или в заранее раскапанные пробирки с цитратом добавляют 7.5 мкл крови, кровь с цитратом перемешивают в пробирке, снова набирают в капилляр и устанавливают в специальный штатив на 1 час.

По методу Вестергрена (в пробирке)

Метод Вестергрена — это международный метод определения СОЭ. Он отличается от метода Панченкова характеристиками используемых пробирок и калибровкой шкалы результатов. Результаты, получаемые этим методом, в области нормальных значений совпадают с результатами, получаемыми методом Панченкова. Но метод Вестергрена более чувствителен к повышению СОЭ, и результаты в зоне повышенных значений СОЭ будут выше результатов, получаемых методом Панченкова.

Для выполнения определения СОЭ по методу Вестергрена необходима венозная кровь, взятая с цитратом натрия 3,8 % в соотношении 4:1. Также используется венозная кровь, взятая с ЭДТА (1,5 мг/мл) и затем разведённая цитратом натрия или физиологическим раствором в соотношении 4:1. Метод выполняется в специальных пробирках Вестергрена с просветом 2,4—2,5 мм и шкалой, градуированной в 200 мм. СОЭ считывают в мм за 1 час.

1) Знание проводящей системы сердца необходимо для освоения ЭКГ и понимания сердечных аритмий.

Сердце обладает автоматизмом — способностью самостоятельно сокращаться через определенные промежутки времени. Это становится возможным благодаря возникновению электрических импульсов в самом сердце. Оно продолжает биться при перерезке всех нервов, которые к нему подходят. Импульсы возникают и проводятся по сердцу с помощью так называемой проводящей системы сердца. Компоненты проводящей системы сердца:

· синусно-предсердный узел,

· предсердно-желудочковый узел,

· пучок Гиса с его левой и правой ножкой,

· волокна Пуркинье.

1) синусно-предсердный узел (= синусовый, синоатриальный, SA; от лат. atrium - предсердие) — источник возникновения электрических импульсов в норме. Именно здесь импульсы возникают и отсюда распространяются по сердцу. Cинусно-предсердный узел расположен в верхней части правого предсердия, между местом впадения верхней и нижней полой вены. Слово “синус” в переводе означает “пазуха”, “полость”. Фраза “ритм синусовый” в расшифровке ЭКГ означает, что импульсы генерируются в правильном месте — синусно-предсердном узле. Нормальная частота ритма в покое — от 60 до 80 ударов в минуту. Частота сердечных сокращений (ЧСС) ниже 60 в минуту называется брадикардией, а выше 90 — тахикардия. У тренированных людей обычно наблюдается брадикардия. Существует дыхательная синусовая аритмия (ритм называется неправильным, если временной интервал между отдельными сокращениями на ≥ 10% превышает среднее значение). При дыхательной аритмии ЧСС на вдохе увеличивается, а на выдохе уменьшается, что связано с изменением тонуса блуждающего нерва и изменением кровенаполнения отделов сердца при повышении и понижении давления в грудной клетке. Как правило, дыхательная синусовая аритмия сочетается с синусовой брадикардией и исчезает при задержке дыхания и увеличении ЧСС. Дыхательная синусовая аритмия бывает преимущественно у здоровых людей, особенно молодых. Появление такой аритмии у лиц, выздоравливающих после инфаркта миокарда, миокардита и др., является благоприятным признаком и указывает на улучшение функционального состояния миокарда.

2) предсердно-желудочковый узел (атриовентрикулярный, AV; от лат. ventriculus — желудочек) является “фильтром” для импульсов из предсердий. Он расположен возле самой перегородки между предсердиями и желудочками. В AV-узле самая низкая скорость распространения электрических импульсов во всей проводящей системе сердца. Она равна примерно 10 см/с (для сравнения: в предсердиях и пучке Гиса импульс распространяется со скоростью 1 м/с, по ножкам пучка Гиса и всем нижележащим отделам вплоть до миокарда желудочков — 3-5 м/с). Задержка импульса в AV-узле составляет около 0.08 с, она необходима, чтобы предсердия успели сократиться раньше и перекачать кровь в желудочки. Есть аритмии, при которых нарушается формирование и распространение импульсов в предсердиях. Например, при мерцательной аритмии (= фибрилляция предсердий) волны возбуждения беспорядочно циркулируют по предсердиям, но AV-узел блокирует большинство импульсов, не давая желудочкам сокращаться слишком часто. С помощью различных препаратов можно регулировать ЧСС, повышая проводимость в AV-узле (адреналин, атропин) или снижая ее (дигоксин, верапамил, бета-блокаторы). Постоянная мерцательная аритмия бывает тахисистолической (ЧСС > 90), нормосистолической (ЧСС от 60 до 90) или брадисистолической формы (ЧСС < 60).

3) Пучок Гиса (= предсердно-желудочковый пучок) не имеет четкой границы с AV-узлом, проходит в межжелудочковой перегродке и имет длину 2 см, после чего делится на левую и правую ножки соответственно к левому и правому желудочку. Поскольку левый желудочек работает интенсивнее и больше по размерам, то левой ножке приходится разделиться на две ветви — переднюю и заднюю. Патологические процессы (некроз, воспаление) могут нарушать распространение импульса по ножкам и ветвям пучка Гиса, что видно на ЭКГ. В таких случаях в заключении ЭКГ пишут, например, “полная блокада левой ножки пучка Гиса”.

4) Волокна Пуркинье связывают конечные разветвления ножек и ветвей пучка Гиса с сократительным миокардом желудочков.

Способностью генерировать электрические импульсы (т.е. автоматизмом) обладает не только синусовый узел. Синусовый узел является водителем ритма первого порядка и генерирует импульсы в частотой 60-80 в минуту. Если по какой-то причине синусовый узел выйдет из строя, станет активным AV-узел — водитель ритма 2-го порядка, генерирующий импульсы 40-60 раз в минуту. Водителем ритма третьего порядка являются ножки и ветви пучка Гиса, а также волокна Пуркинье. Автоматизм водителя ритма третьего порядка равен 15-40 импульсов в минуту. Водитель ритма также называют пейсмекером (pacemaker, от англ. pace — скорость, темп). В норме активен только водитель ритма первого порядка. Такое происходит, потому что электрический импульс приходит к другим автоматическим водителям ритма раньше, чем в них успевает сгенерироваться собственный. Если автоматические центры не повреждены, то нижележащий центр становится источником сокращений сердца только при патологическом повышении его автоматизма (например, при пароксизмальной желудочковой тахикардии в желудочках возникает патологический источник постоянной импульсации, которая заставляет миокард желудочков сокращаться в своем ритме с частотой 140-220 в минуту). Наблюдать работу пейсмекера третьего порядка можно также при полном блокировании проведения импульсов в AV-узле, что называется полной поперечной блокадой (= AV-блокада III степени). При этом на ЭКГ видно, что предсердия сокращаются в своем ритме с частотой 60-80 в минуту (ритм SA-узла), а желудочки — в своем с частотой 20-40 в минуту.

2) Автоматия– это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы. У здорового человека это происходит в области синоатриального узла, так как эти клетки отличаются от других структур по строению и свойствам. Они имеют веретеновидную форму, расположены группами и окружены общей ба-зальной мембраной. Эти клетки называются водителями ритма первого порядка, или пейсмекерами. В них с высокой скоростью идут обменные процессы, поэтому метаболиты не успевают выноситься и накапливаются в межклеточной жидкости. Также характерными свойствами являются низкая величина мембранного потенциала и высокая проницаемость для ионов Na и Ca Отмечена довольно низкая активность работы натрий-калиевого насоса, что обусловлено разностью концентрации Na и K. Автоматия возникает в фазу диастолы и проявляется движением ионов Na внутрь клетки. При этом величина мембранного потенциала уменьшается и стремится к критическому уровню деполяризации – наступает медленная спонтанная диастолическая деполяризация, сопровождающаяся уменьшением заряда мембраны. В фазу быстрой деполяризации возникает открытие каналов для ионов Na и Ca, и они начинают свое движение внутрь клетки. В результате заряд мембраны уменьшается до нуля и изменяется на противоположный, достигая +20–30 мВ. Движение Na происходит до достижения электрохимического равновесия по ионам Na, затем начинается фаза плато. В фазу плато продолжается поступление в клетку ионов Ca. В это время сердечная ткань невозбудима. По достижении электрохимического равновесия по ионам Ca заканчивается фаза плато и наступает период реполяризации – возвращения заряда мембраны к исходному уровню. Потенциал действия синоатриального узла отличается меньшей амплитудой и составляет ±70–90 мВ, а обычный потенциал ровняется ±120–130 мВ. В норме потенциалы возникают в синоатриальном узле за счет наличия клеток – водителей ритма первого порядка. Но другие отделы сердца в определенных условиях также способны генерировать нервный импульс. Это происходит при выключении синоат-риального узла и при включении дополнительного раздражения. При выключении из работы синоатриального узла наблюдается генерация нервных импульсов с частотой 50–60 раз в минуту в атриовентрикулярном узле – водителе ритма второго порядка. При нарушении в ат-риовентрикулярном узле при дополнительном раздражении возникает возбуждение в клетках пучка Гиса с частотой 30–40 раз в минуту – водитель ритма третьего порядка. Градиент автоматии – это уменьшение способности к автоматии по мере удаления от синоатриального узла, то есть от места непосредственной генерализации импульсов.

3) Электрокардиография — методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии. Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) — графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Метод электрокардиографии основан на том, что в процессе распространения возбуждения по миокарду возникает разность электрических потенциалов: поверхность невозбужденных (поляризованных) кардиомиоцитов несет положительный заряд, а возбужденных (деполяризованных) - отрицательный. Таким образом, сердце становится источником электромагнитного поля, которое распространяется по тканям организма. В результате, различные участки поверхности тела приобретают разный электрический потенциал, т. е. между ними возникает электрическое напряжение, которое можно измерить при помощи вольтметра. В клинической практике ЭКГ регистрируется специальным прибором - электрокардиографом. Максимальная положительная разность потенциалов будет зарегистрирована, когда моментный вектор сердца параллелен оси отведения и направлен в ту же сторону; при графической регистрации этому соответствует максимальное отклонение кривой вверх от нулевой линии. Максимальная отрицательная разность потенциалов и максимальное отклонение кривой вниз от нулевой линии будут зарегистрированы, когда вектор параллелен оси, но направлен в противоположную сторону. Если вектор перпендикулярен оси (т.е. величина его проекции на ось равна нулю), то разность потенциалов между электродами не возникнет, и отклонений кривой регистрироваться не будет. Когда моментный вектор сердца направлен под углом к оси отведения, величина его проекции принимает промежуточное значение: положительное - если вектор направлен в сторону положительного электрода, или отрицательное - если вектор направлен от положительного электрода.






Date: 2015-09-22; view: 192; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.019 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию