Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Сосудисто-тромбоцитарный гемостаз





Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба. Условно его разделяют на три стадии: 1) временный (первичный) спазм сосудов; 2) образование тромбоцитарной пробки за счет адгезии (прикрепления к поврежденной поверхности) и агрегации (склеивания между собой) тромбоцитов; 3) ретракция (сокращение и уплотнение) тромбоцитарной пробки.

Сразу после травмы наблюдается первичный спазм кровеносных сосудов, благодаря чему кровотечение в первые секунды может не возникнуть или носит ограниченный характер. Первичный спазм сосудов обусловлен выбросом в кровь в ответ на болевое раздражение адреналина и норадреналина и длится не более 10—15 с. В дальнейшем наступает вторичный спазм, обусловленный активацией тромбоцитов и отдачей в кровь сосудосуживающих агентов — серотонина, адреналина и др.

Повреждение сосудов сопровождается немедленной активацией тромбоцитов, что обусловлено появлением высоких концентраций АДФ (из разрушающихся эритроцитов и травмированных сосудов), а также с обнажением субэндотелия, коллагеновых и фибриллярных структур. В результате «раскрываются» вторичные рецепторы и создаются оптимальные условия для адгезии, агрегации и образования тромбоцитарной пробки.

Адгезия обусловлена наличием в плазме и тромбоцитах особого белка — фактора Виллебранда (FW), имеющего три активных центра, два из которых связываются с экспрессированными рецепторами тромбоцитов, а один — с рецепторами субэндотелия и коллагеновых волокон. Таким образом, тромбоцит с помощью FW оказывается «подвешенным» к травмированной поверхности сосуда.

Одновременно с адгезией наступает агрегация тромбоцитов, осуществляемая с помощью фибриногена — белка, содержащегося в плазме и тромбоцитах и образующего между ними связующие мостики, что и приводит к появлению тромбоцитарной пробки.

Важную роль в адгезии и агрегации играет комплекс белков и полипептидов, получивших наименование «интегрины». Последние служат связующими агентами между отдельными тромбоцитами (при склеивании друг с другом) и структурами поврежденного сосуда. Агрегация тромбоцитов может носить обратимый характер (вслед за агрегацией наступает дезагрегация, т. е. распад агрегатов), что зависит от недостаточной дозы агрегирующего (активирующего) агента.



Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются гранулы и содержащиеся в них биологически активные соединения — АДФ, адреналин, норадреналин, фактор Р4, и др. (этот процесс получил название реакции высвобождения), что приводит к вторичной, необратимой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образованием тромбина, резко усиливающего агрегацию и приводящего к появлению сети фибрина, в которой застревают отдельные эритроциты и лейкоциты.

Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, т. е. наступает ее ретракция.

В норме остановка кровотечения из мелких сосудов занимает 2—4 мин.


 

2) Одновременно с первичным (сосудисто-тромбоцитарным) гемостазом развивается вторичный (коагуляционный), который обеспечивает остановку кровотечения из тех сосудов, для которых недостаточно предыдущего этапа. Тромбоцитарная пробка не выдерживает высокого давления крови и при уменьшении реакции рефлекторного спазма может вымываться: Поэтому на смену ей формируется настоящий тромб. Основой образования тромба является переход растворенного фибриногена (Ф-И) в нерастворимый фибрин с формированием сети, в которой запутываются форменные элементы крови. Фибрин образуется под влиянием фермента тромбина. В норме тромбина нет в крови.

В ней содержится его предшественник, имеет неактивную форму. Это протромбин (Ф-II). Для активации протромбина нужен свой фермент - протромбиназа. Процесс образования активной протромбиназы сложный, требует взаимодействия многих факторов плазмы, клеток, тканей и продолжается 5-7 мин.

Все процессы коагуляционного гемостаза является ферментативными. Они происходят по типу последовательного каскада.

Сложной и длинной является фаза формирования протромбиназы. Основой образования фермента протромбиназы является липидный фактор. В зависимости от типа происхождения выделяют тканевый (внешний) и плазменный (внутренний) механизмы. Тканевая протромбиназа появляется через 5-10 с после повреждения, а кровяная - только через 5-7 мин.

Тканевая протромбиназа. При образовании тканевой протромбиназы липидный фактор-активатор выделяется из мембран поврежденных тканей, стенок сосудов. Сначала активируется Ф-VII. Ф-VIIa вместе с фосфолипидами тканей и кальцием образует комплекс 1а. Под влиянием этого комплекса активируется Ф-Х. Ф-Ха фосфолипидах образует с участием Са2 + и Ф-V комплекс 3, который и является тканевой протромбиназы. Тканевая протромбиназа активирует небольшое количество тромбина, который используется главным образом в реакции агрегации тромбоцитов. Кроме того, выявлено еще одну функцию образованного по внешним механизмом тромбина - под его влиянием на мембране агрегированных тромбоцитов формируются рецепторы, на которых может адсорбироваться Ф-Ха. Вследствие этого Ф-Ха становится недосягаемым для одного из сильных антикоагулянтов - антитромбина III. Это составляет предпосылку для последующего формирования на месте тромбоцитарного тромба настоящего.



Кровяная протромбиназа образуется на основе фосфолипидов мембран поврежденных клеток крови (тромбоцитов, эритроцитов). Инициатором этого процесса является волокна коллагена, которые появляются при повреждении сосуда. Благодаря контакту коллагена с Ф-XII начинается каскад ферментативных процессов. Активированный Ф-ХИИа образует первый комплекс с Ф-Хиа на фосфолипидах мембран эритроцитов и тромбоцитов, разрушающихся до сих пор. Это самая медленная реакция, она длится 4-7 мин.

Дальнейшие реакции также происходят на матрице фосфолипидов, но скорость их значительно выше. Под воздействием комплекса и формируется комплекс 2, состоящий из Ф-Иха, Ф-VIII и Са2 +. Этот комплекс активирует Ф-Х. И наконец, Ф-Ха матрицы фосфолипидов образует комплекс 3-кровяную протромбиназа (Xa + V + + Ga2 +).

Вторая фаза свертывания крови - образование тромбин в. Через 2-5 с после образования протромбиназы почти мгновенно (за 2-5 с) ??происходит образование тромбина. Белок плазмы протромбин (а2-глобулин, имеет молекулярную массу 68700) содержится в плазме (0,15 г / л). Кровяная протромбиназа адсорбирует на своей поверхности п / отромбин и превращает его в тромбин.

Третья фаза - превращение фибриногена в фибрин. Под влиянием тромбина фибриноген плазмы превращается в фибрин. Этот процесс происходит в 3 этапа. Сначала фибриноген (молекулярная масса 340 000; в норме содержится в концентрации от 1 до 7 г / л) в присутствии Са2 + расщепляется на 2 субъединицы. Каждая из них состоит из 3 полипептидных цепей - а, г, Y. Эти золевидни мономеры фибрина под действием электростатических сил становятся параллельно друг другу, образуя фибринполимеры. Для этого нужен Са2 + и плазменный фактор Фибринопептиды А. Образующийся гель еще может растворяться. Его называют фибрином S. На третьем этапе с участием Ф-ХНЕ и фибриназы ткани, тромбоцитов, эритроцитов и Са2 + образуются ковалентные связи, и фибрин S превращается в нерастворимый фибрин 1. Вследствие этого формируется еще относительно мягкий клубок нитей фибрина, в которые запутываются тромбоциты, эритроциты и лейкоциты, что приводит к их разрушению. Это способствует местному увеличению концентраций факторов свертывания и фосфолипидов мембран, а уволен из эритроцитов гемоглобин дает тромбов соответствующего цвета.

3) Система фибринолиза - антипод системы свертывания крови. Она обеспечивает растворение фибриновых нитей, в результате чего в сосудах восстанавливается нормальный кровоток.

Она имеет строение, аналогичное системе свертывания крови:

· компоненты системы фибринолиза., находящиеся в периферической крови;

· органы, продуцирующие и утилизирующие компоненты системы фибринолиза;

· органы, разрушающие компоненты системы фибринолиза;

· механизмы регуляции.

Система фибринолиза в норме оказывает строго локальное действие, т. к. компоненты ее адсорбируются на фибриновых нитях под действием фибринолиза нити растворяются, в процессе гидролиза образуются вещества, растворимые в плазме - продукты деградации фибрина (ПДФ) - они выполняют функцию вторичных антикоагулянтов, а затем выводятся из организма.

Значение системы фибринолиза.

· Растворяет нити фибрина, обеспечивая реканализацию сосудов.

· Поддерживает кровь в жидком состоянии.

Компоненты системы фибринолиза:

· плазмин (фибринолизин);

· активаторы фибринолиза;

· ингибиторы фибринолиза.

Плазмин - вырабатывается в неактивном состоянии в виде плазминогена. По своей природе это белок глобулиной фракции, вырабатывается в печени. Много его в сосудистой стенке. В гранулоцитах, эндофилах, легких, матке, предстательной и щитовидной железах.

В активном состоиянии плазмин адсорбируется на фибриновых нитях и действует как протеолитический фермент. В больших количествах плазмин может мутировать и фибриноген, образуя продукты деградации фибрина и фибриногена (ПДФФ), которые тоже являются вторичными антикоагулянтами.

При повышении количества плазмина, уменьшается количество фибриногена, возникает гипо- или афибринолитическое кровотечение.

Активаторы фибринолиза - превращают плазминоген в плазмин. Делятся на плазменные и тканевые.

Плазменные активаторы включают 3 группы веществ: различные фосфатазы плазмы крови - они находятся в активном состоянии - это активные (прямые) активаторы (физиологические). Кроме того, трипсин: вырабатывается в поджелудочное железе, попадает в 12-перстную кишку, там всасывается в кровь. В норме трипсин находится в крови в виде следов. При поражении поджелудочной железы концентрация трипсина в крови резко возрастает. Он полностью расщепляет плазминоген, что приводит к резкому снижению фибринолитической активности.

Активность урокиназы - она вырабатывается в юкстагломерулярном аппарате почек. Встречается в моче, поэтому моча может обладать слабой фибринолитической активностью.

Активаторы бактериального происхождения - стрепто- и стафиллокиназы.

Непрямые активаторы - находятся в плазме в неактивном состоянии, для их активации нужны белки лизокиназы: тканевые мукокиназы - активируются при травме тканей; плазменные лизокиназы - самый важный XII фактор свертывания крови.

Тканевые активаторы - находятся в тканях.

Их особенности:

· тесно связаны с клеточной структурой и освобождаются лишь при повреждении ткани;

· всегда находятся в активном состоянии;

· сильное, но ограниченное действие.

Ингибиторы делятся на:

· ингибиторы, препятствующие превращению плазминогена в плазмин;

· препятствующие действию активного плазмина.

Сейчас существуют искусственные ингибиторы, которые используются для борьбы с кровотечениями: Е-аминокапроновая кислота, контрикал, трасилол.

Фазы ферментативного фибринолиза:

I фаза: активация неактивных активаторов. При травме ткани освобождаются тканевые лизокиназы, при контакте с поврежденными сосудами активируются плазменные лизокиназы (XII плазменный фактор), т. е. происходит активация активаторов.

II фаза: активация плазмиогена. Под действием активаторов от плазминогена отщепляется тормозная группа и он становится активным.

III фаза: плазмин расщепляет фибриновые нити до ПДФ. Если участвуют уже активные активаторы (прямые) - фибринолиз протекает в 2 фазы.

Процесс неферментативного фибринолиза идет без плазмина. Действующее начало - комплекс гепарина С.

Данный процесс идет под контролем следующих веществ.

· тромбогенные белки - фибриногеном, XIII плазменным фактором, тромбином;

· макроэрги - АДФ поврежденных тромбоцитов;

· компоненты фибринолитической системы: плазмином, плазминогеном, активаторами и ингибиторами фибринолиза;

· гормонами: адреналином, инсулином, тироксином.

Суть: комплексы гепарина действуют на нестабильные фибриновые нити (фибрин S): после действия фибрино-стабилизирующего фактора комплексы гепарина (на фибрин J) не действуют. При этом виде фибринолиза не идет гидролиз фибриновых нитей, а идет информационное изменение молекулы (фибрин S из фибриллярной формы переходит в тобулярную).

В нормальных условиях взаимодействие системы свертывания крови и системы фибринолиза происходит таким образом: в сосудах постоянно идет микросвертывание, что вызвано постоянным разрушением старых тромбоцитов и выделением из них в кровь тромбоцитарных факторов. В результате образуется фибрин, который останавливается при образовании фибрина S, который тонкой пленкой выстилает стенки сосудов. Нормализуя движение крови и улучшая ее реалогические свойства.

Система фибринолиза регулирует толщину этой пленки, от которой зависит проницаемость сосудистой стенки. При активации свертывающей системы активируется и система фибринолиза.


 






Date: 2015-09-22; view: 247; Нарушение авторских прав

mydocx.ru - 2015-2019 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию