Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






КИНЕМАТИКА Основные формулы





ГЛАВА 1 ФИЗИЧЕСКИЕ ОСНОВЫ МЕХАНИКИ


• Положение материальной точки в пространстве задается радиусом-вектором г:

 
 


где i, j, k — единичные векторы направлений (орты); х, у, z — координаты точки.

Кинематические уравнения движения в координатной форме:

где t — время.

• Средняя скорость

 

где — перемещение материальной точки за интервал времени .

Средняя путевая * скорость

 

где — путь, пройденный точкой за интервал времени .

Мгновенная скорость

где — проекции скорости v на оси координат.

Модуль скорости

 

• Ускорение

 

где проекции ускорения a на оси

координат.

· См. об этом термине, например, в кн.: Детлаф А. А. и др. Курс физики. М., 1973. Т. I. С. 17.

Модуль ускорения


При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих (рис.1.1):

Модули этих ускорений:

где R — радиус кривизны в данной точке траектории.

• Кинематическое уравнение равномерного движения материальной точки вдоль оси х

где начальная координата; t — время. При равномерном движении

v =const и a=0.

• Кинематическое уравнение равнопеременного движения()вдоль оси x

где v 0 —начальная скорость; t — время.

Скорость точки при равнопеременном движении

v=v 0+a t.

• Положение твердого тела (при заданной оси вращения) определяется углом поворота (или угловым перемещением) .

Кинематическое уравнение вращательного движения

• Средняя угловая скорость

где — изменение угла поворота за интервал времени . Мгновенная угловая скорость *

• Угловое ускорение *

• Кинематическое уравнение равномерного вращения

где —начальное угловое перемещение; t— время. При равномерном вращении =const и =0.

* Угловая скорость и угловое ускорение являются аксиальными векторами, их направления совпадают с осью вращения.


Частота вращения

n=N/t, или n=1/T,

где N — число оборотов, совершаемых телом за время t; Т — период вращения (время одного полного оборота).

• Кинематическое уравнение равнопеременного вращения ( = const.)

где —начальная угловая скорость; t— время.

Угловая скорость тела при равнопеременном вращении

.

• Связь между линейными и угловыми величинами, характеризующими вращение материальной точки, выражается следующими формулами:

путь, пройденный точкой по дуге окружности радиусом R,

s= R ( — угол поворота тела);

скорость точки линейная

ускорение точки:

тангенциальное

нормальное

 

Примеры решения задач

Пример 1. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид x=A+Bt+Ct3, где A=4 м, B=2 м/с, С=-0,5 м/с2. Для момента времени t 1=2 с определить:

1) координату x 1 точки, 2) мгновенную скорость v 1, 3) мгновенное ускорение a1.

Решение. 1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения вместо t заданное значение времени t 1:

x=A+Bt+Ct3.

Подставим в это выражение значения A, В, С, t 1 и произведем вычисления:

X 1=(4+4- 0,5 23) м=4 м.

2. Мгновенную скорость в произвольный момент времени найдем, продифференцировав координату х по времени: .

Тогда в заданный момент времени t 1 мгновенная скорость

v 1=B+3C t 12 Подставим сюда значения В, С, t 1 и произведем вычисления:

v 1 =- 4 м/с.


 

 

Знак минус указывает на то, что в момент времени t1=2 с точка движется в отрицательном направлении координатной оси.

3. Мгновенное ускорение в произвольный момент времени найдем, взяв вторую производную от координаты х по времени:

Мгновенное ускорение в заданный момент времени t 1 равно a 1 =6Ct 1. Подставим значения С, t 1и произведем вычисления:

a1=(—6 0,5 2) м/с=—6 м/с.

Знак минус указывает на то, что направление вектора ускорения совпадает с отрицательным направлением координатной оси, причем в условиях данной задачи это имеет место для любого момента времени.

Пример 2. Кинематическое уравнение движения материальной точки по прямой (ось х) имеет вид, x=A+Bt+Ct2, где A=5 м, B=4 м/с, С=-1 м/с2. Построить график зависимости координаты х и пути s от времени. 2. Определить среднюю скорость < vx > за интервал времени от t 1=1 с до t 2=6 с. 3. Найти среднюю путевую скорость < v > за тот же интервал времени.

Решение. 1. Для построения графика зависимости координаты точки от времени найдем характерные значения координаты — начальное и максимальное и моменты времени, соответствующие указанным координатам и координате, равной нулю.


Начальная координата соответствует моменту t =0. Ее значение равно

x0=x | t= 0=A=5 м.

Максимального значения координата достигает в тот момент, когда точка начинает двигаться обратно (скорость меняет знак). Этот момент времени найдем, приравняв нулю первую производную от координаты повремени:

, откуда t=—B/2C=2 с Максимальная координата

x max =x / t =2 = 9 М.

Момент времени t, когда координата х=0, найдем из выражения x=A+Bt+Ct2=0.

Решим полученное квадратное уравнение относительно t:

Подставим значения А, В, С и произведем вычисления:

t=(2±3) с.

Таким образом, получаем два значения времени: t'-=5 с и =-1 с. Второе значение времени отбрасываем, так как оно не удовлетворяет условию задачи (t>0).

 

 

График зависимости координаты точки от времени представляет собой кривую второго порядка. Для его построения необходимо иметь пять точек, так как уравнение кривой второго порядка со­держит пять коэффициентов. Поэтому кроме трех вычисленных ра­нее характерных значений координаты найдем еще два значения координаты, соответствующие моментам t 1=l с и t 2 =6 с:

x 1 = А + Bt 1 + Ct 12 = 8 м, x 2 = А + Bt 2 + Ct 22 = -7 м.

Полученные данные представим в виде таблицы:

Время, с Координата, м t 1=0 x 0=A=5 t 1=1 x 0=8 t B=2 x max=9 =5 x =0 t 2=6 x 2=-7

Используя данные таблицы, чертим график зависимости координаты от времени (рис. 1.2).

График пути построим, исходя из следующих соображений:

1) путь и координата до момента изменения знака скорости совпадают; 2) начиная с момента возврата (t B) точки она движется в обратном направлении и, следовательно, координата ее убывает, а путь продолжает возрастать по тому же закону, по которому убывает координата.

Следовательно, график пути до момента времени tB =2 с совпадает с графиком координаты, а начиная с этого момента яв­ляется зеркальным отображением графика координаты.

2. Средняя скорость < v x> за интервал времени t2—t1 определяется выражением

<vx>=(x2-x1)/(t2—t1).

Подставим значения x1, x2, t1, t2. из таблицы и произведем вычисления

< vx >=(—7—8)/(6—1) м/с=—3 м/с.

3. Среднюю путевую скорость < v> находим из выражения

< v> =s/(t 2- t1),

где s — путь, пройденный точкой за интервал времени t2.—t1. Из графика на рис. 1.2 видно, что этот путь складывается из двух отрезков пути: S 1 =x maxx1, который точка прошла за интервал времени tB—t1, и S2= x max+| x 2|, который она прошла за интервал

 

Рис. 1.2

T 2 —t B. Таким образом, путь

S = S1 + S2 = (xmax—x2) + (xmax + |x2|) == 2xmax + |x2|—x1.

Подставим в это выражение значения x max, | x 2|, x 1 и произведем вычисления:

<s>=(2 9+7—8) м=17 м.

Тогда искомая средняя путевая скорость

< v >=17/(6—1) м=3,4 м.

Заметим, что средняя путевая скорость всегда положительна.

Пример 3. Автомобиль движется по закруглению шоссе, имеющему радиус кривизны R=50 м. Уравнение * движения автомобиля (t) = A+Bt+Ct2, где A=10 м, B=10 м/с, С=—0,5 м/с2. Найти: 1) скорость v автомобиля, его тангенциальное , нормальное а n. и полное а ускорения в момент времени t =5 с; 2) длину пути s и модуль перемещения | | автомобиля за интервал времени =10 с, отсчитанный с момента начала движения.


Решение. 1. Зная уравнение движения, найдем скорость, взяв первую производную от координаты по времени:

. Подставим в это выражение значения В, С, t и произведем вычисления:

v =5 м/с.

Тангенциальное ускорение найдем, взяв первую производную от скорости по времени: Подставив значение С, получим = —1 м/с2.

Нормальное ускорение определяется по формуле an= v 2/R. Подставим сюда найденное значение скорости и заданное значение радиуса кривизны траектории и произведем вычисления:

an==0,5 м/с2.

Полное ускорение, как это видно из рис. 1.1, является геометрической суммой ускорений а и а n: а = а + а n. Модуль ускорения . Подставив в это выражение найденные значения а и аn получим

а=1,12 м/с2.

2. Чтобы определить путь s, пройденный автомобилем, заметим, что в случае движения в одном направлении (как это имеет место в условиях данной задачи) длина пути s равна изменению криволинейной координаты т. е.

s= , или .

Подставим в полученное выражение значения В, С, и произведем вычисления:

s=50 м.

 
 


* В заданном уравнении движения означает криволинейную координату, отсчитанную от некоторой начальной точки на окружности.

 

Модуль перемещения, как это видно из рис. 1.3, равен | r|=2Rsin( /2),

где — угол между радиусами-векторами, определяющими начальное (0) и конечное положения автомашины на траектории. Этот угол (в радианах) находим как отношение длины пути s к радиусу кривизны R траектории, т. е. = =s/R. Таким образом,

Подставим сюда значения R, s ипроизведем вычисления:

| [= 47,9м.

Пример 4. Маховик, вращавшийся с постоянной частотой n0=10 с1, при торможении начал вращаться равнозамедленно. Когда торможение прекратилось, вращение маховика снова стало равномерным, но уже с частотой п=6 с1. Определить угловое ускорение маховика и продолжительность t торможения, если за время равнозамедленного движения маховик сделал N==50 оборотов.

Решение. Угловое ускорение маховика связано с начальной и конечной угловыми скоростями соотношением , откуда Но так как то

Подставив значения , п, п 0, N и вычислив, получим

=3,14(62-102)/50 рад/с2=—4,02 рад/с2.

Знак минус указывает на то, что маховик вращался замедленно. Определим продолжительность торможения, используя формулу, связывающую угол поворота со средней угловой скоростью < v> вращения и временем t: =< >t. По условиям задачи, угловая скорость линейно зависит от времени и поэтому можно написать , тогда ,

Откуда

Подставив числовые значения и произведя вычисления, получим

Задачи

Прямолинейное движение

1.1. Две прямые дороги пересекаются под углом =60°. От перекрестка по ним удаляются машины: одна со скоростью v 1 =60 км/ч, другая со скоростью v 2= 80 км/ч.


 

 

Определить скорости v' и v", с которыми одна машина удаляется от другой. Перекресток машины прошли одновременно.

1.2. Точка двигалась в течение t 1 = 15c со скоростью v 1=5 м/с, в течение t 2=10 с со скоростью v 2 =8 м/с и в течение t 3 =6 с со скоростью v 3=20 м/с. Определить среднюю путевую скорость < v > точки.

1.3. Три четверти своего пути автомобиль прошел со скоростью v 1=60 км/ч, остальную часть пути — со скоростью v 2 =80 км/ч. Какова средняя путевая скорость < v > автомобиля?

1.4. Первую половину пути тело двигалось со скоростью v 1=2 м/с, вторую — со скоростью v 2=8 м/с. Определить среднюю путевую скорость < v >.

1.5. Тело прошло первую половину пути за время t 1=2 с, вторую — за время t 2=8 с. Определить среднюю путевую скорость < v > тела, если длина пути s=20 м.

1.6. -Зависимость скорости от времени для движения некоторого тела представлена на рис. 1.4. Определить среднюю путевую скорость < v > за время t =14 с.




 


Рис. 1.4 Рис. 1.5

1.7. Зависимость ускорения от времени при некотором движении тела представлена на рис. 1.5. Определить среднюю путевую скорость < v > за время t=8 с. Начальная скорость v 0=0.

1.8. Уравнение прямолинейного движения имеет вид x=At+Bt2, где A=3 м/с, B=—0,25 м/с2. Построить графики зависимости координаты и пути от времени для заданного движения.

1.9. На рис. 1.5 дан график зависимости ускорения от времени для некоторого движения тела. Построить графики зависимости скорости и пути от времени для этого движения, если в начальный момент тело покоилось.

1.10. Движение материальной точки задано уравнением x=At+Bt2, где A =4 м/с, В=— 0,05 м/с2. Определить момент времени, в который скорость v точки равна нулю. Найти координату и ускорение в этот момент. Построить графики зависимости координаты, пути, скорости и ускорения этого движения от времени.

1.11. Написать кинематическое уравнение движения x=f(t) точки для четырех случаев, представленных на рис. 1.6. На каждой


позиции рисунка — а, б, в, г — изображена координатная ось Ох, указаны начальные положение x 0 и скорость v0 материальной точки А, а также ее ускорение а.

1.12. Прожектор О (рис. 1.7) установлен на расстоянии l ==100 м от стены АВ и бросает светлое пятно на эту стену. Прожектор вращается вокруг вертикальной оси, делая один оборот за время Т= 20 с. Найти: 1) уравнение движения светлого пятна по стене в течение первой четверти оборота; 2) скорость v, с которой светлое пятно движется по стене, в момент времени t=2 с. За начало отсчета принять момент, когда направление луча совпадает с ОС.




 


1.13. Рядом с поездом на одной линии с передними буферами паровоза стоит человек. В тот момент, когда поезд начал двигаться с ускорением а=0,1 м/с2, человек начал идти в том же направлении со скоростью v =1,5 м/с. Через какое время t поезд догонит человека? Определить скорость v 1 поезда в этот момент и путь, пройденный за это время человеком.

1.14. Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через 2 с после первой. Первая точка двигалась с начальной скоростью v 1==l м/с и ускорением a1=2 м/с2, вторая — с начальной скоростью v 2=10 м/с и ускорением а2=1 м/с2. Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?

1.15. Движения двух материальных точек выражаются уравнениями:

x 1 =A 1 +B 1t +C 1 t2, x 2 =A 2 +B 2t +C 2 t2,

где A 1=20 м, A 2=2 м, B 1 =B 2 =2 м/с, C1= — 4 м/с2, С2=0,5 м/с2.

В какой момент времени t скорости этих точек будут одинаковыми? Определить скорости v 1 и v 2 и ускорения a1 и а2 точек в этот момент:

1.16. Две материальные точки движутся согласно уравнениям;

x 1 =A 1 t+B 1t2 +C 1 t 3, x 2 =A 2 t+B 2t2 +C 2 t 3,

где A 1=4 м/c, B 1=8 м/с2, C1= — 16 м/с3, A 2=2 м/с, B 2 = - 4 м/с2, С2=1м/с3

 


В какой момент времени t ускорения этих точек будут одинаковы? Найти скорости v 1 и v 2 точек в этот момент.

1.17. С какой высоты Н упало тело, если последний метр своего пути оно прошло за время t =0,1 с?

1.18. Камень падает с высоты h=1200 м. Какой путь s пройдет камень за последнюю секунду своего падения?

1.19. Камень брошен вертикально вверх с начальной скоростью v 0==20 м/с. По истечении какого времени камень будет находиться на высоте h=15м? Найти скорость v камня на этой высоте. Сопротивлением воздуха пренебречь. Принять g=10 м/с2.

1.20. Вертикально вверх с начальной скоростью v 0=20 м/с брошен камень. Через =1 с после этого брошен вертикально вверх другой камень с такой же скоростью. На какой высоте h встретятся камни?

1.21. Тело, брошенное вертикально вверх, находилось на одной и той же высоте h=8,6 м два раза с интервалом t=3 с. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела.

1.22. С балкона бросили мячик вертикально вверх с начальной скоростью v 0=5 м/с. Через t= 2 с мячик упал на землю. Определить высоту балкона над землей и скорость мячика в момент удара о землю.

1.23. Тело брошено с балкона вертикально вверх со скоростью v 0=10 м/с. Высота балкона над поверхностью земли h=12,5 м. Написать уравнение движения и определить среднюю путевую скорость < v > с момента бросания до момента падения на землю.

1.24. Движение точки по прямой задано уравнением x=At+Bt2, где A =2 м/с, В=— 0,5 м/с2. Определить среднюю путевую скорость < v> движения точки в интервале времени от t 1=l с до t 2=3 с.

1.25. Точка движется по прямой согласно уравнению x=At+Bt3, где A=6 м/с, В == —0,125 м/с3. Определить среднюю путевую скорость < v> точки в интервале времени от t 1=2 с до t 2=6 с.

Криволинейное движение

1.26. Материальная точка движется по плоскости согласно уравнению r (t)= i At3+ j Bt2. Написать зависимости: 1) v (t); 2) a (t).

1.27. Движение материальной точки задано уравнением r (t)=A (i cos t - j sin t), где A =0,5 м, =5 рад/с. Начертить траекторию точки. Определить модуль скорости | v | и модуль нормального ускорения |an |.

1.28. Движение материальной точки задано уравнением r (t) = i (A+Bt 2 )+ j Ct, где A==10 м, В= — 5 м/с2, С=10 м/с. Начертить траекторию точки. Найти выражения v (t) и a (t). Для момента времени t =1 с вычислить: 1) модуль скорости | v |; 2) модуль ускорения |а|; 3) модуль тангенциального ускорения | а |; 4) модуль нор­мального ускорения | an |.

1.29. Точка движется по кривой с постоянным тангенциальным ускорением a =0,5 м/с2. Определить полное ускорение а точки на


участке кривой с радиусом кривизны R=3 м, если точка движется на этом участке со скоростью v ==2 м/с.

1.30. Точка движется по окружности радиусом R==4 м. Начальная скорость v 0 точки равна 3 м/с, тангенциальное ускорение a =1 м/с2. Для момента времени t=2 с определить: 1) длину пути s, пройденного точкой; 2) модуль перемещения | |; 3) среднюю путевую скорость | |; 4) модуль вектора средней скорости |< v >|.

1.31. По окружности радиусом.R=5 м равномерно движется материальная точка со скоростью v =5 м/с. Построить графики зависимости длины пути s и модуля перемещения | | от времени t. В момент времени, принятый за начальный (t=0), s(0) и | (0)| считать равными нулю.

1.32. За время t=6 с точка прошла путь, равный половине длины окружности радиусом R==0,8 м. Определить среднюю путевую скорость < v > за это время и модуль вектора средней скорости |< v >|.

1.33. Движение точки по окружности радиусом R=4 м задано уравнением * = A+Bt+Ct2, где A=10 м, В=—2 м/с, С=1 м/с2. Найти тангенциальное а , нормальное an и полное а ускорения точки в момент времени t =2с.

1.34. По дуге окружности радиусом R= 10 м движется точка. В некоторый момент времени нормальное ускорение точки аn=4,9 м/с2; в этот момент векторы полного и нормального ускорений образуют угол =60°. Найти скорость v и тангенциальное ускорение a точки.

1.35. Точка движется по окружности радиусом R=2 м согласно уравнению * = At3, где A =2 м/с3. В какой момент времени t нормальное ускорение аn точки будет равно тангенциальному а . Определить полное ускорение а в этот момент.

1.36. Движение точки по кривой задано уравнениями x=A 1 t3 и y =A2 t, где A1==l м/с3, A2=2 м/с. Найти уравнение траектории точки, ее скорость v и полное ускорение а в момент времени t=0,8 с.

1.37. Точка А движется равномерно со скоростью v по окружности радиусом R. Начальное положение точки и направление движения указаны на рис. 1.8. Написать кинематическое уравнение движения проекции точки A на направление оси х.

1.38. Точка движется равномерно со скоростью v по окружности радиусом R и в момент времени, принятый за начальный (t=0), занимает положение, указанное на рис. 1.8. Написать кинематические уравнения движения точки: 1) в декартовой системе координат, расположив оси так, как это указано на рисунке; 2) в полярной системе координат (ось х считать полярной осью).

1.39. Написать для четырех случаев, представленных на рис. 1.9:

1) кинематические уравнения движения x=f 1(t) и x=f 2(t); 2) уравнение траектории у= (х). На каждой позиции рисунка — а, б, в, г — изображены координатные оси, указаны начальное положение точки A, ее начальная скорость v 0 и ускорение g.

1.40. С вышки бросили камень в горизонтальном направлении.

* См. сноску на с. 11.


Через промежуток времени t =2 с камень упал на землю на расстоянии s=40 м от основания вышки. Определить начальную v 0 и конечную v скорости камня.

1.41. Тело, брошенное с башни в горизонтальном направлении со скоростью v =20 м/с, упало на землю на расстоянии s (от основания башни), вдвое большем высоты h башни. Найти высоту башни.





 


Рис. 1.8 Рис. 1.9

1.42. Пистолетная пуля пробила два вертикально закрепленных листа бумаги, расстояние l между которыми равно 30 м. Пробоина во втором листе оказалась на h=10см ниже, чем в первом. Определить скорость v пули, если к первому листу она подлетела, двигаясь горизонтально. Сопротивлением воздуха пренебречь.

1.43. Самолет, летевший на высоте h-=2940 м со скоростью v =360 км/ч, сбросил бомбу. За какое время t до прохождения над целью и на каком расстоянии s от нее должен самолет сбросить бомбу, чтобы попасть в цель? Сопротивлением воздуха пренебречь.

1.44. Тело брошено под некоторым углом к горизонту. Найти этот угол, если горизонтальная дальность s полета тела в четыре раза больше максимальной высоты Н траектории.

1.45. Миномет установлен под углом =60° к горизонту на крыше здания, высота которого h=40 м. Начальная скорость v 0 мины равна 50 м/с. Требуется: 1) написать кинематические уравнения движения и уравнения траектории и начертить эту траекторию с соблюдением масштаба; 2) определить время полета мины, максимальную высоту Н ее подъема, горизонтальную дальность s полета, скорость v в момент падения мины на землю. Сопротивлением воздуха пренебречь.

Указание. Начало координат поместить на поверхности земли так, чтобы оно находилось на одной вертикали с минометом и чтобы вектор скорости v лежал в плоскости хОу.

1.46. Снаряд, выпущенный из орудия под углом =30° к горизонту, дважды был на одной и той же высоте h: спустя время t 1=10 с и t 2=50 с после выстрела.


Определить начальную скорость v 0 и высоту h.

1.47. Пуля пущена с начальной скоростью v 0=200 м/с под углом =60° к горизонту. Определить максимальную высоту Н подъема, дальность s полета и радиус R кривизны траектории пули в ее наивысшей точке. Сопротивлением воздуха пренебречь.

1.48. Камень брошен с вышки в горизонтальном направлении с начальной скоростью v 0=30 м/с. Определить скорость v, тангенциальное a и нормальное an ускорения камня в конце второй секунды после начала движения.

1.49. Тело брошено под углом =30° к горизонту. Найти тангенциальное a ; и нормальное аn ускорения в начальный момент движения.

 

Вращение тела вокруг неподвижной оси

 

1.50. Определить линейную скорость v и центростремительное ускорение an точек, лежащих на земной поверхности: 1) на экваторе; 2) на широте Москвы ( =56°).

1.51. Линейная скорость v 1 точек на окружности вращающегося диска равна 3 м/с. Точки, расположенные на =10 см ближе к оси, имеют линейную скорость v 2=2 м/с. Определить частоту вращения п диска.

1.52. Два бумажных диска насажены на общую горизонтальную ось так, что плоскости их параллельны и отстоят на d=30 см друг от друга. Диски вращаются с частотой n==25 с-1. Пуля, летевшая параллельно оси на расстоянии r=12 см от нее, пробила оба диска. Пробоины в дисках смещены друг относительно друга на расстояние s=5 см, считая по дуге окружности. Найти среднюю путевую скорость < v > пули в промежутке между дисками и оценить создаваемое силой тяжести смещение пробоин в вертикальном направлении. Сопротивление воздуха не учитывать.

1.53. На цилиндр, который может вращаться около горизонтальной оси, намотана нить. К концу нити привязали грузик и предоставили ему возможность опускаться. Двигаясь равноускоренно, грузик за время t=3 с опустился на h= 1,5 м. Определить угловое ускорение цилиндра, если его радиус r=4 см.

1.54. Диск радиусом r = 10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением =0,5 рад/с2. Найти тангенциальное a , нормальное ап и полное а ускорения точек на окружности диска в конце второй секунды после начала вращения.

1.55. Диск радиусом r=20 см вращается согласно уравнению =A+B t+Сt3, где A=3 рад, В=—1 рад/с, С=0,1 рад/с3. Определить тангенциальное a нормальное аn и полное а ускорения точек на окружности диска для момента времени t =10 с.

1.56. Маховик начал вращаться равноускоренно и за промежуток времени t =10 с достиг частоты вращения n=300 мин"1. Определить угловое ускорение маховика и число N оборотов, которое он сделал за это время.

 

1.57. Велосипедное колесо вращается с частотой п=5 с1. Под действием сил трения оно остановилось через интервал времени t =1 мин. Определить угловое ускорение и число N оборотов, которое сделает колесо за это время.

1.58. Колесо автомашины вращается равноускоренно. Сделав N=50 полных оборотов, оно изменило частоту вращения от n1=4 с1 до n2==6 с1. Определить угловое ускорение колеса.

1.59. Диск вращается с угловым ускорением =—2 рад/с2. Сколько оборотов N сделает диск при изменении частоты вращения от n1=240 мин -1 до n2=90 мин -1? Найти время t, в течение которого это произойдет.

1.60. Винт аэросаней вращается с частотой n=360 мин1. Скорость v поступательного движения аэросаней равна 54 км/ч. С какой скоростью u движется один из концов винта, если радиус R винта равен 1 м?

1.61. На токарном станке протачивается вал диаметром d= 60 мм. Продольная подача h резца равна 0,5 мм за один оборот. Какова скорость v резания, если за интервал времени t =1 мин протачивается участок вала длиной l =12 см?

 

 







Date: 2015-09-03; view: 889; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.08 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию