Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Некоторые частные случаи движения точки. Пользуясь полученными результатами, рассмотрим некоторые частные случаи движения точки
Пользуясь полученными результатами, рассмотрим некоторые частные случаи движения точки.
Равномерное прямолинейное движение Равномерное прямолинейное движение - это движение, при котором тело за любые равные промежутки времени совершает равные перемещения, т. е. это движение с постоянной по модулю и направлению скоростью: — уравнение скорости, — уравнение ускорения. Пусть в момент времени t0=0 координата тела х0, в момент t - х (рис. 14). Рис.14
Тогда за промежуток времени Δt=t-t0=t координата X тела изменилась на величину ∆х = х - х0. Следовательно, проекция скорости тела ,следовательно, x=x0+vxt- кинематическое уравнение равномерного движения (уравнение зависимости координаты от времени). Проекция перемещения ∆rx=х-х0 ∆rx=vxt - уравнение перемещения. При равномерном прямолинейном движении направление скорости не изменяется, поэтому путь . Следовательно, — уравнение пути. Зависимость кинематических величин от времени можно изобразить графически. Изобразим графики скорости, перемещения, пути и координаты для трех тел: 1, 2, 3 (рис. 15). Рис.15
Тела 1, 2 движутся в положительном направлении оси Ох, причем ; тело 3 движется в направлении, противоположном оси Ох; их начальные координаты соответственно , . Графики скорости представлены на рис.16. Площадь заштрихованного прямоугольника численно равна пути s (модулю перемещения), пройденному телом 1 за время t1. На рис.17 даны графики перемещения , на рис.18 - графики пути s=f(t). Рис.16 Рис.17 Рис.18
Наклон графика , к оси времени зависит от модуля скорости: . Графики движения (зависимости координаты от времени) изображены на рис.19. Рис.19 С помощью графика движения можно определить: 1) координаты тела в любой момент времени; 2) путь, пройденный телом за некоторый промежуток времени; 3) время, за которое пройден какой-то путь; 4) кратчайшее расстояние между телами в любой момент времени; 5) момент и место встречи тел и др.
Date: 2015-09-03; view: 505; Нарушение авторских прав |