Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Определение ускорения при координатном способе задания движения





Вектор ускорения точки в проекции на оси получаем:

Или

т.е. проекция ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул

где α1, β1, γ1 - углы, образуемые вектором ускорения с координатными осями.

Пример 3. Движение точки задано уравнениями x=2t, y=3-4t2.

Из первого уравнения t=x/2. Подставив во второе, получим уравнение траектории: y=3-x2

Это уравнение параболы. В на­чале движения, при t=0, точка находи­лась на самом верху, в положении M 0 (x0=0, y0=3 см).

А, например, при t =0,5 c она будет в положении M с координатами x1=1 см; y1=2 см.

Проекции скорости на оси vx= =2см∙с-1, vy= =-8t см∙с-1.

При t =0,5 c, vx=2см∙с-1, vy=-4 см∙с-1.

И модуль скорости

Составляющие скорости по осям и вектор её показаны в масштабе на рис. 10.

Рис.10

 

Проекции ускорения ax= =0, ay= =-8 см∙с-2. Так как проекция вектора ускорения на ось x равна нулю, а на ось y – отрица­тельна, то вектор ускорения на­правлен верти­кально вниз, и величина его постоянна, не за­висит от времени.

 







Date: 2015-09-03; view: 405; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию