Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
ДНК — носитель наследственной информации
«Значение ДНК столь велико, что никакое знание о ней не будет полным». Ф.Крик.
ДНК — дезоксирибонуклеиновая кислота — биологическая макромолекула, носитель генетической информации во всех эукариотических и прокариотических клетках и во многих вирусах. В 1928 г. Ф.Гриффит обнаружил у пневмококков явление трансформации (преобразование свойств бактерий). Он показал, что клетки невирулентных штаммов бактерий (шероховатые без капсул) приобретают свойства вирулентных (гладких с капсулами) штаммов, убитых нагреванием. Природа трансформирующего агента была установлена Эвери, Мак-Леодом и Мак-Карти в 1944 г., им оказалась ДНК. Так открытие и изучение трансформации доказало роль ДНК как материального носителя наследственной информации, (рис. 2.1).
Рис. 2.1. Трансформирующий фактор — это ДНК- Трехмерная модель пространственного строения двухцепочечной ДНК была описана в апрельском журнале Nature в 1953 г. Дж. Уотсоном, Френсисом Криком и Морисом Уилкинсом. Эти исследования легли в основу молекулярной биологии, изучающей основные свойства и проявления жизни на молекулярном уровне. Структура ДНК — полимер, структурной единицей которого является нуклеотид (рис. 2.2). Нуклеотид состоит из азотистого основания пу-ринового: аденин (А) или гуанин (Г) или пирими-динового: цитозин (Ц) или тимин (Т), углевода дезоксирибозы (пятиуглеродное сахарное кольцо) и остатка фосфорной кислоты (НРО~). Двойная спираль ДНК правосторонняя. 10 пар оснований составляют полный оборот 360°, следовательно, каждая пара оснований повернута на 36 градусов вокруг спирали относительно следующей пары. Фосфатные группировки находятся снаружи спиралей, а основания — внутри и расположены с интервалом 34 нм. Цепи удерживаются вместе водородными связями между основаниями и закручены одна вокруг другой и вокруг общей оси.
Рис. 2.2. Строение ДНК. В разработке модели ДНК важную роль сыграли наблюдения Чаргаффа (1949) о том, что количественные отношения гаунина всегда равны содержанию цитозина, а содержание аденина соответствует содержанию тимина. Это положение было названо «правило Чаргаффа»:
т.е. пропорция пуриновых и пиримидиновых оснований всегда равная. Чаргаффом для характеристики нуклеотидного состава ДНК был предложен коэффициент специфичности, учитывающий долю гуанин-цитозиновых пар:
Нуклеотиды соединены в полинуклеотидную цепь связями между 5' положения одного пентозного конца и 3' положения следующего пентозного кольца через фосфатную группу с образованием фосфодиэфирных мостиков, т.е. сахарно-фосфатный остов ДНК состоит из 5—3' связей. Генетическая информация записана в последовательности нуклеотидов в направлении от 5' конца к 3' концу — такая нить называется смысловой ДНК, здесь расположены гены. Вторая нить направления 3-5' считается антисмысловой, но является необходимым «эталоном» хранения генетической информации. Антисмысловая нить играет большую роль в процессах репликации и репарации (восстановление структуры поврежденной ДНК). Основания в антипараллельных нитях образуют за счет водородных связей комплементарные пары: А+Т; Г+Ц. Таким образом, структура одной нити определяет последовательность нуклеотидов другой нити. Следовательно, последовательности оснований в нитях ДНК всегда антипараллельны и комплементарны. Принцип комплементарности универсален для процессов репликации и транскрипции. В настоящее время описаны несколько модификаций молекулы ДНК. Полиморфизм ДНК — это способность молекулы принимать различные конфигурации. В настоящее время описано 6 форм, часть которых может существовать только in vitro (в пробирке): В-форма — имеет стандартную структуру, практически соответствующую модели ДНК, которая была предложена Уотсоном, Криком и Уилкинсом, в физиологических условиях (низкая концентрация солей, высокая степень гидратации) является доминирующим структурным типом. А-форма — обнаружена в более обезвоженных средах и при более высоком содержании ионов калия и натрия. Интересна с биологической точки зрения, т.к. ее информация близка к структуре двухцепочечных ДНК, или для ДНК-РНК дуплексов. С-форма — имеет меньше форм оснований на виток, чем В-форма. В этих трех формах могут находиться все ДНК независимо от нуклеотидной последовательности. Следующие формы характерны только для молекул ДНК с определенными последовательностями в парах оснований. D- и Е-форма — возможны крайние варианты одной и той же формы, имеют наименьшее число пар оснований на виток (8 и 7.5). Обнаружены только в молекулах ДНК, не содержащих гуанина. Z-форма — это зигзагообразная форма, с чередованием лево- и правоспиральности. Эта форма выявляется при наличии ряда факторов: высокая концентрация солей и наличие специфических катионов; высокое содержание отрицательных супервитков в молекуле ДНК и других Z-ДНК встречается на участках, обогащенных парами Г—Ц. Показано, что Z-форма ДНК может участвовать в регуляции экспрессии генов как близко расположенных, так и существенно удаленных от Z-учас-тков, а также играть существенную роль в процессах рекомбинации. Шотландский ученый Арнотт предположил: «Было бы удивительно, если бы в живой природе никак не использовалась эта способность ДНК — менять свою форму». Некоторые из форм могут при определенных условиях, связанных с изменениями концентрации солей и степени гидратации, переходить друг в друга, например, А <-> В; а также Z <-> В. Предполагают, что взаимные переходы А- и В-форм регулируют работу генов. Показательно, что в ДНК человека имеются участки, потенциально способные переходить в Z-форму, которые диспергированы в геноме человека. Предполагается, что в клетках человека существуют условия, стабилизирующие Z-форму (Марри и др., 1993). Таблица 2.1 Структурные свойства некоторых типов ДНК
Знание структуры и функции ДНК необходимо для понимания сути некоторых генетических процессов, которые являются матричными. Было ясно, что сама ДНК не может играть роль матрицы при синтезе белков из аминокислот, т.к. почти вся она находится в хромосомах, расположенных в ядре, в то время как большинство, если не все, клеточные белки синтезируются в цитоплазме. Таким образом, генетическая информация, заклю- -ченная в ДНК, должна передаваться какой-то промежуточной молекуле, которая транспортировалась бы в цитоплазму и участвовала в синтезе полипептидных цепей. Предположение о том, что такой промежуточной молекулой может быть РНК, стало всерьез рассматриваться сразу, как только была открыта структура двойной спирали ДНК. Во-первых, клетки, синтезирующие большое количество белка, содержали много РНК. Во-вторых, еще более важным казалось то, что сахарофос-фатные «скелеты» ДНК и РНК чрезвычайно сходны и было бы легко представить себе, как происходит синтез одиночных цепей РНК на одноцепочеч-ной ДНК с образованием нестабильных гибридных молекул, одна цепь которых представлена ДНК, а другая РНК. Взаимоотношения ДНК, РНК и белка в 1953 г. были представлены в виде следующей схемы: репликация ДНК..... транскрипция - ----- > РНК... трансляция......-> белок,
где одиночные цепи ДНК служат матрицами при синтезе комплементарных молекул ДНК (репликация). В свою очередь, молекулы РНК служат матрицами для последовательного соединения аминокислот с образованием полипептидных цепей белков в процессе трансляции, названном так потому, что «текст», написанный на «языке» нуклеотидов, переводится (транслируется) на «язык» аминокислот. Группа нуклеотидов, кодирующая одну аминокислоту, называется кодоном. Date: 2015-09-02; view: 1169; Нарушение авторских прав |