Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Исследование систем линейных уравнений. Базисное решение
Исследовать систему линейных уравнений – означает определить, какой является эта система – совместной или несовместной, и в случае её совместности выяснить, определённая эта система или неопределённая. Условие совместности системы линейных уравнений даёт следующая теорема Теорема 6.1 (Кронекера–Капелли). Система линейных уравнений совместна тогда и только тогда, когда ранг основной матрицы системы равен рангу её расширенной матрицы: Для совместной системы линейных уравнений вопрос о её определённости или неопределённости решается с применением следующих теорем. Теорема 6.2. Если ранг основной матрицы совместной системы равен числу неизвестных, то система является определённой Теорема 6.3. Если ранг основной матрицы совместной системы меньше числа неизвестных, то система является неопределённой. Таким образом, из сформулированных теорем вытекает способ исследования систем линейных алгебраических уравнений. Пусть n – количество неизвестных, 1) при 2) при Определение 6.1. Базисным решением неопределённой системы линейных уравнений называют такое её решение, в котором все свободные неизвестные равны нулю. Пример. Исследовать систему линейных уравнений. В случае неопределённости системы найти её базисное решение.
Вычислим ранги основной Вторую строку матрицы сложим с её первой строкой, умноженной на К третьей строке этой матрицы прибавим вторую строку, умноженную на удаляя из которой третью и четвёртую строки получим ступенчатую матрицу Таким образом, Неизвестные
Date: 2015-08-24; view: 918; Нарушение авторских прав |