![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Стійкість руху
Стійкість руху - поняття, яке характеризує тривале (довгочасне) зберігання будь-яких характеристик руху системи. Проблема стійкості руху виникає при вивченні гіроскопічних систем, систем автоматичного регулювання (наприклад, слідкуючих систем), коливних рухів, при дослідженні рухів літаків, ракет і т. д.. Ж.- Л. Лагранж вважав, що механічна система знаходиться в рівновазі, якщо під час руху відстані між її точками залишаються скінченними. Відомі визначення стійкості руху, які давали С.- Д. Пуассон, П.- С. Лаплас, М. Є. Жуковський та ін. Найбільш загальним і важливим за своїм застосуванням є визначення, яке дав стійкості руху О. М. Ляпунов. Рух будь-якої механічної системи можна обчислити теоретично, знаючи діючі на неї сили і початкові умови. Рух, який система згідно цих обчислень повинна здійснювати по Ляпунову, називається незбуреним рухом. Але практично система зазнає випадкових впливів, які не були враховані при обчисленнях. Якими б малими і короткочасними не були б ці впливи, вони приведуть до того, що в деякий момент t=t 0 координати і швидкості точок системи одержать малі, але нерівні нулю прирости, які Ляпунов називає початковими збуреннями. Подальший рух називається збуреним рухом. Якщо при малих збуреннях деякі з характеристик руху в збуреному русі мало відрізняються від тих значень, які були в незбуреному русі, то по Ляпунову незбурений рух є стійким по відношенню до цих характеристик руху. Якщо при малих діях (збуреннях) значення розглядуваної характеристики буде в збуреному русі з часом все більше відхилятись від її значення в незбуреному русі, то незбурений рух є по відношенню до даної характеристики нестійким. Умови, при яких розглядуваний рух є стійким, називаються умовами (критеріями) стійкості. В якості прикладу розглянемо рух симетричного вертикального гіроскопа (рис. 19.1). Теоретично його вісь повинна залишатись вертикальною при будь-якій кутовій швидкості
де Р - вага гіроскопа, a – відстань від точки О до центра ваги С, Іx і Іy - моменти інерції гіроскопа відносно осей Ох і Оу відповідно. Іншим буде результат, якщо розглянути рух гіроскопа по відношенню до кута обертання φ навколо осі Oz. В незбуреному русі при відсутності тертя (опору) кут повороту φ=ωt. Якщо внаслідок поштовху кутова швидкість зміниться на величину ε, то в збуреному русі φ 1 = (ω+ε) t. Різниця Δ φ=φ 1 - φ= =εt не залежить від ω і з часом нескінченно зростає; тоді по відношенню до кута повороту φ рух гіроскопа буде нестійким при будь-яких значеннях кутової швидкості ω. Таким чином, один і той же рух по відношенню до одних з його характеристик може бути стійким, а по відношенню до інших - нестійким.
Дослідження положень відносної рівноваги. Часто при дослідженні різних механізмів потрібно знайти положення відносної рівноваги і стійкість. Для цього складають так звану змінену потенціальну енергію системи W: W=П+T, (19.25) де П - потенціальна енергія, Т - кінетична енергія системи. Стан рівноваги (положення рівноваги) визначається з рівняння
Положення рівноваги буде стійким при
При положення рівноваги є нестійким.
Дослідження стійкості руху по першому наближенню. Метод визначення стійкості руху по першому наближенню полягає в наступному. Нехай
є частинними розв’язками системи диференціальних рівнянь першого порядку
при заданих початкових умовах руху
Розв’язок (19.29) визначає незбурений рух системи. При інших початкових умовах руху значення змінних уk, які визначають подальший рух системи, записують так:
Віднімемо від (19.32) рівняння (19.30) і знайдемо
Введемо позначення:
Одержимо систему диференціальних рівнянь
З (19.34) виходить, що xk (0, 0,...,0; t) = 0 (19.36) (х 1 = х 2 =...= хn = 0) (19.37) є частинним розв’язком системи (19.35), який відповідає незбуреному рухові. Для розгляду стійкості руху по першому наближенню в системі рівнянь (19.35) в правій частині виділяють лінійні складові (доданки). Коли час явно не входить в праву частину рівняння, будемо мати
Запишемо характеристичне рівняння системи (19.38):
Згідно першої теореми Ляпунова, незбурений рух, який визначається рівнянням (19.29), є стійким, коли корені характеристичного рівняння (19.39) мають від’ємну дійсну частину. В цьому випадку нелінійні доданки в правій частині рівнянь (19.38) не впливають на стійкість руху. Про знак кореня характеристичного рівняння можна судити на основі теореми Гурвіца, яка формулюється так: рівняння n -го степеня з дійсними коефіцієнтами (а 0>0)
має всі корені з від’ємною дійсною частиною, коли всі визначники вигляду є додатними. При розв’язуванні задач на дослідження стійкості руху системи по першому наближенню рекомендується такий порядок дій: 1) визначаємо число ступенів вільності системи і вибираємо узагальнені координати; 2) користуючись рівнянням Лагранжа, складаємо рівняння незбуреного руху; 3) складаємо рівняння збуреного руху, вважаючи, що узагальнені координати відрізняються від значень в незбуреному русі на величини першого порядку малості; 4) віднімаємо від диференціальних рівнянь збуреного руху відповідні рівняння незбуреного руху; 5) для системи лінійних диференціальних рівнянь з постійними коефіцієнтами складаємо характеристичне рівняння; 6) користуючись теоремою Гурвіца, визначаємо знаки дійсних частин коренів характеристичного рівняння і потім робимо висновок про стійкість руху системи.
Зауваження. Для закріплення матеріалу §19 (пункт 19.4) необхідно розв’язати задачі зі збірника “Мещерский И. В. Сборник задач по теоретической механике. – М., Наука, 1981 (1986)”: 1) № 56.1 - 56.5; 2) № 56.7 – 56.15; 3) № 56.17 - 56.20. Рекомендується розв’язати також задачі № 18.6, 18.7, 18.10, 18.12, 18.15, 18.19, 18.20, 18.24, 18.26, 18.27, 18.32 зі збірника “Сборник задач по теоретической механике /Под ред. К. С. Колесникова. – М., Наука, 1989”. Date: 2015-08-15; view: 506; Нарушение авторских прав |