Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Динамические модели





В предыдущей главе мы рассматривали модели, которые явля­ются статическим отражением систем в определенные моменты времени. В этом смысле рассмотренные варианты модели «черного ящика», модели состава и структурной модели называют статиче­скими моделями, что подчеркивает их неподвижность.

Следующий шаг в исследовании системы состоит в том, чтобы понять и описать, как система «работает», выполняя свое предна­значение. Такие модели должны описывать поведение системы, фиксировать изменения, происходящие с течением времени, улав­ливать причинно-следственные связи, адекватно отражать последо­вательность протекаемых в системе процессов и этапность ее разви­тия. Такого рода модели называют динамическими. При исследова­нии конкретной системы необходимо определить направление воз­можных изменений ситуации. Если такой перечень будет исчерпы­вающим, то он характеризует число степеней свободы, а значит, достаточен для описания состояния системы. Как оказалось, дина­мические модели делятся на такие же типы, как статические («чер­ного ящика», состава и «белого ящика»), только элементы этих мо­делей имеют временной характер.

 

2.4.1. Динамическая модель «черного ящика»

При математическом моделировании динамической системы ее конкретная реализация описывается в виде соответствия между возможными значениями некоторой интегральной характеристики системы с и моментами времени t. Если обозначить через С — множество возможных значений с, а через Т — упорядоченное множество моментов времени t, то построение модели динамиче­ской системы равносильно построению отображения

Г->С:с(t)ϵСͭͭ,

где Сͭ — значение интегральной характеристики в точке t ϵ [0, Т].

В динамической модели «черного ящика» предполагается раз­биение входного потока х на две составляющие: и — управляемые входы, y — неуправляемые входы (рис 2.9).

Таким образом, она выражается совокупностью двух процессов:

Хͭ = {u(t), y(t)}; u(t)eU; y(f)eK;

 

Рис. 2.9. Динамическая модель «черного ящика»

 

Если даже считать y(t) результатом некоторого преобразования Ф процесса х(t), т.е. y(t) = Ф[х(t)], то в модели «черного ящика»

предполагается, что это преобразование неизвестно.

Из данного типа моделей в наибольшей мере изучены так назы­ваемые безынерционные системы. Они не учитывают фактора време­ни и работают по схеме «если-то». Например: если воду нагреть до

100° С, то она закипит. Или: если вы правильно авторизовали свою кредитную карту, то банкомат вам сразу выдаст затребованную сумму денег. То есть следствие вступает в силу сразу за причиной.

Определение 1. Динамическая система называется безынерцион­ной, если она мгновенно преобразует вход в выход, т.е. если y(t)

является функцией только х(t) в тот же момент времени.

Поиск неизвестной функции у(/) = Ф(х(t)) осуществляется по­средством наблюдения входов и выходов исследуемой системы. По существу, эта задача о переходе от модели «черного ящика» к моде­ли «белого ящика» по наблюдениям входов и выходов при наличии информации о безынерционности системы.

Однако класс безынерционных систем весьма узок. В экономи­ке такие системы очень большая редкость. Разве только отдельные биржевые операции с некоторой натяжкой можно причислить к классу безинерционных.

При моделировании экономических систем необходимо пом­нить, что в них всегда присутствует задержка и, более того, следст­вие (результат) может проявиться совсем не в том месте, где его ожидали. Таким образом, имея дело с экономическими системами, нужно быть готовым к тому, что последствия могут отстоять от вы­звавшей их причины во времени и пространстве.

Например, если в фирме отдел сбыта пустит на самотек пред­продажное обслуживание и сконцентрирует все свои силы на про­дажах, пострадает отдел гарантийного обслуживания. Но это про­явится не сразу, а спустя определенное время. На лицо проявление следствия «не там и не в то время». Или: для изменения покупа­тельских пристрастий может потребоваться несколько недель рек­ламной кампании, и не обязательно ощутимые перемены начнутся сразу же после ее окончания.

Обратная связь действует по цепочке причинно-следственных связей, образующих замкнутый контур, и требуется время, чтобы его обойти. Чем большей динамической сложностью обладает сис­тема, тем больше нужно времени на то, чтобы сигнал обратной свя­зи пробежал по ее структуре (сети взаимосвязей). Достаточно одной задержки, чтобы обеспечить сильное запаздывание сигнала.


Определение 2. Время, необходимое для того, чтобы сигнал об­ратной связи прошел по всем звеньям системы и вернулся в исход­ную точку, называется памятью системы.

Не только живые системы имеют память. В экономике, напри­мер, это ярко демонстрирует процесс вывода на рынок нового то­вара. Как только на рынке появляется новый товар, пользующийся спросом, сразу находится много желающих его производить. Мно­гие фирмы запускают производство этого товара, и пока существует спрос, наращивают его объемы. Рынок постепенно насыщается, но производители пока этого не ощущают. Когда объем производства превысит некоторое критическое значение, спрос станет падать. Производство товара по определенной инерции еще некоторое вре­мя будет продолжаться. Начнется затоваривание складов готовой продукцией. Предложение сильно превысит спрос. Цена на товар упадет. Многие фирмы прекратят производство этого товара. И та­кая ситуация будет сохраняться до тех пор, пока предложение не упадет до таких значений, что не сможет покрыть существующий спрос. Рынок сразу уловит складывающийся дефицит и отреагирует повышением цены. После этого начнется оживление производства и новый цикл взлета-падения рынка. Так будет продолжаться до тех пор, пока на рынке не останутся несколько производителей, которые либо договорятся между собой, либо интуитивно нащупают квоты производства товара, суммарный объем которых будет соответство­вать требуемому соотношению спроса и предложения (рис. 2.10).

 
 

Точно так же выглядят графики инфляции и дефляции денеж­ного рынка, расцвета и крахов фондового рынка, пополнения и расходования семейного бюджета. Все дело в том, что причину и следствие разделяет задержка во времени. Все это время система «помнит» как она должна отреагировать на причину. На первых порах кажется, что и следствия-то никакого нет. Но со временем эффект проявляется. Введенные в заблуждение (в нашем примере предприниматели) слишком поздно и слишком сильно реагируют на пики спроса и предложения. А во всем виновата уравновеши­вающая обратная связь, работающая с задержкой во времени.

Рис. 2.11. Колебание рынка товара

В такой ситуации есть два решения. Во-первых, можно сделать более надежным измерение, осуществляя постоянный или перио­дический мониторинг рынка. Во-вторых, следует учитывать раз­ницу во времени и стремиться оказаться там где нужно к тому времени, когда сигнал обратной связи успеет пройти через все звенья системы. Когда понимаешь, как осуществляется процесс, появляется возможность изменить ситуацию в желательном на­правлении.

В очень сложных системах следствие может проявиться спустя очень длительное время. К тому времени, когда оно даст о себе знать, критический порог может миновать и будет уже поздно что- либо исправлять. Особенно наглядно такая опасность просматрива­ется во влиянии промышленных отходов на окружающую среду. То, что мы делаем сейчас, скажется на нашей будущей жизни, когда появятся последствия наших дел. Нашими сегодняшними поступ­ками мы формируем облик будущего.

В облике динамической модели «черного ящика», по существу, ничего не изменится, кроме того, что момент появления выхода у потребуется скорректировать на время задержки ∆, т.е. выход сис­темы примет вид y(t + ∆) (см. рис. 2.10). Однако основная труд­ность моделирования в том и заключается, чтобы определить вели­чину Д и место, в котором появится у. Наилучшим образом это удается в рамках построения так называемых лаговых моделей, кото­рые изучает математическая статистика.


 

2.4.2. Динамическая модель состава

В теории систем различают два вида динамики: функциониро­вание и развитие. Под функционированием подразумевают процессы, которые происходят в системе, стабильно реализующей фиксиро­ванную цель (функционирует предприятие, функционируют часы, функционирует городской транспорт и т.п.). Под развитием пони­мают изменение состояния системы, обусловленное внешними и внутренними причинами. Развитие, как правило, связывают с дви­жением систем в фазовом пространстве.

Исследованием функционирования экономических систем заня­ты специалисты в области экономического анализа. Исходную базу для этого исследования составляют данные бухгалтерского учета, статистической отчетности и статистических наблюдений. В боль­шинстве случаев задача экономического анализа решается аналити­ческими методами бухгалтерского учета или сводится к построению и реализации корреляционно-регрессионных моделей. Богатейший инструментарий экономического анализа изучается в рамках ряда дисциплин цикла «Бухгалтерский учет и статистика».

Развитие в большинстве случаев обусловлено изменением внешних целей системы. Характерной чертой развития является то, что существующая структура перестает соответствовать новым це­лям и для обеспечения необходимого соответствия приходится из­менять структуру системы, т.е. осуществлять ее реорганизацию. Экономические системы (предприятия, организации, корпоратив­ные образования) в условиях рыночной экономики для выживания в конкурентной борьбе должны постоянно находиться в фазе разви­тия. Только постоянное обновление ассортимента выпускаемой продукции или оказываемых услуг, совершенствование технологии производства и методов управления, повышение квалификации и образованности персонала могут обеспечить экономической систе­ме определенные конкурентные преимущества и расширенное вос­производство.

В данном параграфе, не отрицая значимости фазы функциони­рования системы, большей частью будем вести речь о фазе ее раз­вития, хотя при расширенном толковании функционирования сис­темы как движения к намеченной цели (плану) приведенные ниже рассуждения вполне применимы к моделированию фазы функцио­нирования системы.

Динамическому варианту модели состава соответствует перечень этапов развития или состояний системы на моделируемом интерва­ле времени. Под состоянием системы будем понимать такую сово­купность параметров, характеризующих пространственное положе­ние системы, которая исчерпывающе определяет ее текущее позирование.


Фиксация состояния определяется посредством введения раз­личных переменных, каждая из которых отражает какую-то одну существенную сторону исследуемой системы. В данном случае важ­на исчерпываемость описания для раскрытия того назначения сис­темы, которое подвергается исследованию в рамках данной модели.

Наиболее наглядно состояние системы определяется через сте­пени свободы. Это понятие введено в механике и означает число независимых координат, однозначно описывающих положение сис­темы. Так, твердое тело в механике есть система с шестью степеня­ми свободы: три линейные координаты фиксируют положение цен­тра масс, а три угловые — положение тела относительно центра масс.

В экономических исследованиях каждую координату (степень свободы) связывают с определенным показателем (количественно измеряемой характеристикой системы). Ключевая задача при этом заключается в том, чтобы обеспечить независимость показателей, отобранных для построения модели системы. Поэтому необходимо глубоко понимать природу экономических явлений и отражающих их показателей, чтобы правильно сформировать базис для построе­ния модели состава экономической системы.

 
 

Развитие системы есть не привычное перемещение, а некоторая абстракция, описывающая изменение ее состояния. Таким образом, динамические свойства объекта характеризуются через изменение параметров состояния во времени. На рис. 2.12 приведено графиче­ское отображение движения системы в трехмерном пространстве (в теории систем такое пространство называют пространством состоя­ний, или фазовым пространством).

Рис. 2.12. Траектория развития системы

 

Тогда состояние системы в момент времени ts описывается вектором Cs = (C1s,C2s,C3s). Аналогично описываются ее началь­ное Сн и конечное Ск состояния, а изменения в системе отобра­жаются некоторой кривой — траекторией развития. Каждая точка этой кривой фиксирует состояние системы в определенный момент времени. Тогда движение системы эквивалентно перемещению точ­ки по траектории С2.

Экстраполируя это описание на случай и независимых коорди­нат и помня, что каждая координата (параметр) зависит от времени t, развитие системы можно описать совокупностью функций с1= с1(t), с2=с2(t),..., сn =сn(t), или вектором (с1(t), с2 (t),...,сn =сn(t)), принадлежащим пространству состояний С.

Таким образом, динамическая модель состава системы это не что иное, как упорядоченная последовательность ее состояний, по­следнее из которых эквивалентно цели системы, т.е.

Сн =С0 —>СJ —>Ct —>...—>СT=Ск,

где Сн — начальное;

Ск — конечное;

С, = (c1 (t), c2 (t),..., сn (t)), t ϵ [0, T] — текущее состояние системы.

Случай, когда строго определены граничные состояния систе­мы, относится к категории простейших, так как далеко не всегда удается описать состояние конкретными значениями. Более общей является ситуация, когда на начальное и конечное состояния сис­темы накладываются некоторые условия. Каждое из условий в про­странстве состояний представляется некоторой поверхностью или областью, размерность которой не должна быть больше числа сте­пеней свободы системы. Тогда вектор состояния системы в гранич­ные моменты времени должен находиться на заданной поверхности или в заданной области, что и будет означать выполнение условий.

 

2.4.3. Динамическая структурная модель

В динамических системах элементы могут вступать в самые раз­нообразные отношения между собой. А поскольку каждый из них способен пребывать во множестве различных состояний, то даже при небольшом числе элементов они могут быть соединены множе­ством различных способов. Построить модель такой системы, пре­дусмотрев изменение состояний одних элементов системы в зави­симости от того, что происходит с другими ее элементами, — очень непростая задача. Тем не менее современная наука выработала не­мало подходов к моделированию такого рода систем. На двух из них, которые стали классическими, остановимся подробнее.

Как и в случае статической структурной модели, динамическая структурная модель представляет собой симбиоз динамической мо­дели «черного ящика» и динамической модели состава. Другими словами, динамическая структурная модель должна увязать в еди­ное целое вход в систему X = {х(t)} = {u(t),v(t)}, u(t)ϵu, v(t)ϵV, промежуточные состояния

Ct =[C1 (t), C2(t),..., cn(t)], t ϵ[0,T], и выход y={y(t)},

где, U — множество управляемых входов u(t);

U — множество неуправляемых входов v(t);

X = U U X — множество всех входов в систему;

Т — горизонт моделирования системы;

С, — промежуточное состояние системы в момент време­ни t ϵ [0, T].

В зависимости от того, отображаются промежуточные состояния системы строго определенной упорядоченной последовательностью

Сt (t = 0,1, 2,..., Т) или одной неопределенной функцией Ct = Ф(t, хt), в результате моделирования получают либо динамическую струк­турную модель сетевого типа, либо динамическую структурную мо­дель аналитического типа.

Сетевые динамические модели. В динамической структурной мо­дели сетевого типа для каждой пары соседних состояний системы Сt-1 и Сt (t ϵ [0, T]) задается управляющее воздействие u(t), которое переводит систему из состояния Ct-l в состояние Ct. При этом оче­видно, что u(t) на каждом шаге траектории может принимать зна­чения из некоторого множества допустимых управляющих воздей­ствий на этом шаге

Ut: u(t)ϵUt. (2.1)

Таким образом, промежуточное состояние системы в некоторой точке t траектории ее развития записывается следующим образом

Сt=F(Ct-i,u(t)), t ϵ[0,T].

Обозначим через Ct множество всех состояний системы, в ко­торое можно ее перевести из начального состояния C0=CH за t ша­гов, используя управляющие воздействия u(t) ϵ Ut (t = 0,1, 2,..., t). Множество достижимости Сt определяется с помощью следующих рекуррентных соотношений:

Сt = {Ct: Сt = ƒ(Сt-1, и(t); и(t ϵUt; t = 0,1, 2,...,t}.

В задании на дальнейшее развитие или первоначальную разра­ботку системы указывается перечень допустимых ее конечных со­стояний, которые должны принадлежать некоторой области

СtϵС-Т. (2.2)

Управление U =(u(1), u(2),..., u{t),..., и(Т)), состоящее из пошаговых управляющих воздействий, будет допустимым, если оно переводит систему из начального состояния Сн = С0 в конечное состояние Ск =СT, удовлетворяющее условию (2.2).

Выведем условия допустимости управления. Для этого рассмотрим последний Т-й шаг. В силу ограниченности множества UT перевести систему в состояние СT ϵ СT можно не из любого состоя­ния CT-1, а лишь из—T-1,Ст-1 G с,

Где, С — множество, удовлетворяющее условию

VCT=1 ϵ C-T-1зu(T)ϵUT: су =/(СУ-1, и(Т))&ст.

Иными словами, чтобы иметь возможность после Т-то шага—г управления выйти в область допустимых состояний С, необходимо—г-1 после (Г — 1) шагов находиться в области С.

Аналогичные множества допустимых состояний с' формируют­ся для всех остальных шагов t = 1, Т — 1.

Для достижения цели построения (развития) системы необхо­димо выполнение условий

С'ПС'*0, / = 1,Т. (2.3)

В противном случае цель системы не может быть достигнута. Для преодоления этого препятствия потребуется либо изменить—T цель системы, изменив тем самым С, либо расширить область возможных управляющих воздействий ut = 1,Т (в первую очередь на тех шагах траектории системы, на которых не выполняется усло­вие 2.3).

Пусть в результате преодоления (t -1) шагов система перешла в состояние Ct-1. Тогда множество допустимых управляющих воздей­ствий на t-м шаге определяется следующим образом:

U(t) = {u(t): Сt =ƒ(Сt-1, u(t) ϵс-t}. (2.4)

Объединяя (2.1) и (2.4), можно записать условия управляемого целенаправленного развития системы:

U(t)ϵ(t)nU(f) = 1д. (2.5)

Условия (2.5) означают, что управление должно быть возможным по его реализуемости и допустимым по обеспечению выхода системы в заданную область конечных состояний.

Таким образом, построение динамической структурной модели системы сетевого типа заключается в формализованном описании траектории ее развития путем задания промежуточных состояний системы и управляющих воздействий, последовательно переводя­ щих систему из начального состояния в конечное, соответствующее цели ее развития.

Поскольку из «начала» в «конец», как правило, существует множество путей, определение траектории развития системы можно вести по различным критериям (минимуму времени, максимуму эффекта, минимуму затрат и т.п.). Выбор критерия определяется целью моделирования системы.

Такой подход к моделированию динамических систем, как пра­вило, приводит к построению сетевых моделей разных типов (сете­вым графикам, технологическим сетям, сетям Петри и т.п.). Неза­висимо от типа сетевой модели их сущность заключается в том, что они описывают некоторую совокупность логически увязанных ра­бот, выполнение которых должно обеспечить построение некоторой системы (предприятия, дороги, политической партии) или перевода ее в другое состояние, соответствующее новым целям и требовани­ям времени.

Конкретизация динамических систем на этом, конечно, не за­канчивается. Приведенные модели, скорее всего, являются отдель­ными примерами реальных систем. В классе моделей динамических систем различают еще стационарные модели, мягкие и жесткие мо­дели, которые находят применение при исследовании конкретных прикладных проблем.

 

Контрольные вопросы

1. Приведите несколько определений системы и содержательную характеристику каждого из них.

2. В чем заключается разница между философской категорией и естественно-научным понятием?

3. Перечислите и проинтерпретируйте основные свойства системы.

4. Что такое эмерджентность системы?

5. Как соотносятся понятия «целостность» и «эмерджентность»?

6. В чем заключается сущность редукционизма? Чем он отличается от системного подхода?

7. В чем заключается разница между внешними и внутренними связями системы?

8. Какое свойство лежит в основе деления систем на открытые и закрытые (замкнутые)?

9. Приведите примеры закрытых экономических систем.

10. С помощью чего обеспечивается устойчивость системы?

11. В чем заключаются внутренняя и внешняя цели системы?

12. Как согласуются внутренняя и внешняя стратегии системы?

13. Как установить границы экономической системы?

14. Назовите причину неудовлетворительности прогнозов, получаемых в результате эконометрического моделирования.

15. Охарактеризуйте транзакционную среду экономической системы.

16. За счет чего открытые экономические системы сохраняют свои индивидуальные особенности?

17. Как (в каких шкалах) измеряются эмерджентные свойства сис-тем?

18. Назовите необходимое условие существования эмерджентного свойства системы.

19. В чем заключается сущность свойства целеустремленности. Как это свойство проявляется в экономических системах?

20. Приведите примеры реактивных, ответных, самонастраиваемых и активных экономических систем.

21. В чем заключается сущность свойства иерархичности экономических систем?

22. Эквивалентны ли понятия «уровень иерархии» и «страта»?

23. В чем заключается сущность свойства многомерности экономической системы?

24. Дайте системное определение понятию «компромисс».

25. Приведите практические примеры использования свойства многомерности при исследовании экономических систем.

26. В чем заключается сущность свойства множественности экономической системы?

27. Приведите примеры множественности функций экономической системы.

28. Как проявляется множественность структуры экономической системы?

29. Приведите примеры эквифинальности и мультифинальности экономических систем.

30. Перечислите причины контринтуитивного поведения экономи-ческих систем.

31. Какой классификационный признак положен в основу первич-ной классификации систем?

32. Назовите основные характеристики естественных систем. При-ведите примеры.

33. Назовите основные характеристики искусственных систем. Приведите примеры.

34. В чем заключается специфика социокультурных систем?

35. К какому классу первичных систем относятся экономические системы?

36. В какой мере естественные, технические и гуманитарные науки привлекаются к анализу экономических систем?

37. Разместите факторы в порядке убывания влияния на конфигурацию системы: внешняя среда, внутренние связи системы, связи системы с внешней средой, элементы системы.

38. Поясните, каким образом моральные ценности лица, принимающего решения, материализуются в реальной экономической системе.

39. Что представляет собой среда, в которой существуют и функционируют экономические системы?

40. Дайте определение экономической системы.

41. Какие классификационные признаки положены в основу пространственно-временной классификации экономических систем?








Date: 2015-07-25; view: 1513; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.031 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию