Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Блок 11. Малая выборка
Малая выборка – это несплошное статистическое наблюдение, при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности. Обычно объем малой выборки не превышает 30 единиц, а минимальный объем может доходить до 4-5 единиц. В отдельных случаях к малой может быть отнесена выборка до 45 единиц. Малая выборка широко применяется в экономических исследованиях и при организации контроля качества товаров и услуг. Средняя ошибка малой выборки определяется по формуле: где - дисперсия малой выборки, она рассчитывается по формуле = , где n-1 - число степеней свободы. Предельная ошибка малой выборки рассчитывается по формуле: Коэффициент доверия t зависит не только от заданной доверительной вероятности, но и от численности единиц выборки n. Для отдельных значений t и n доверительная вероятность малой выборки определяется по специальным таблицам Стьюдента, где даны распределения стандартизированных отклонений: .
Для проведения малой выборки в качестве доверительной вероятности принимается 0,95 и 0,99. Для определения предельной ошибки малой выборки используют распределения Стьюдента и определяют коэффициент доверия t:
Пример. При анализе прибыли по сделкам, совершенным фирмой в течение года, была сделана выборка и установлена по ним прибыльность в %: 4,5; 5,0; 4,2; 3,5; 6,0; 5,2; 4,5; 5,2; 4,3; 6,6. Нужно по данным выборочного наблюдения установить с вероятностью 0,95 предел, в котором находится средняя прибыльность сделок, по результатам работы фирмы за год. Средняя прибыльность сделок по данным малой выборки: Определяем дисперсию малой выборки; для этого произведем предварительные расчеты:
= = Определяем среднюю ошибку малой выборки: Находим предельную ошибку малой выборки. Для этого по распределению Стьюдента при заданной вероятности находим значение коэффициента доверия t= 2,263 2,263 Следовательно, с вероятностью 0,95 можно утверждать, что средняя годовая прибыльность сделок фирмы находится в пределах: т.е. от 4,9-0,66= 4,24% до 4,9+0,66= 5,56%. Date: 2015-07-24; view: 418; Нарушение авторских прав |