Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Характеристического уравнения
Установившийся режим работы электроэнергетических систем предполагает непрерывное, стохастическое изменение во времени большого количества нагрузок. Это приводит к появлению на генераторах системы дополнительных малых моментов DM, которые также стохастически увеличивают и уменьшают моменты, действующие на валах этих генераторов и смещающие их роторы на малые углы Dd. Возникающие при этом переходные процессы могут быть описаны дифференциальными уравнениями относительно малых Dd. Порядок уравнений определяется сложностью рассматриваемой электрической системы. Рассмотрим простейший случай:
Станция - шины бесконечной мощности. Проанализируем статическую устойчивость системы (рис.2.5) при отсутствии нагрузки в узлах 1, 2, 4 и подключении к узлу 3 синхронного неявнополюсного генератора. Для решения этой задачи целесообразно привести исходную расчетную схему (рис.2.5) к эквивалентному виду (рис.3.1). Если не учитывать переходные процессы в обмотке возбуждения генератора, но учесть демпфирующие моменты, дифференциальное уравнение относительно Dd имеет вид [4]:
где Коэффициент уравнения
где
где
Определив значения корней характеристического уравнения (3.6), на основе теоремы Ляпунова можно судить об устойчивости системы. Зададимся исходными параметрами генератора [7] и системы. Расчет будем вести в относительных единицах:
Для определения коэффициента Матрица узловых сопротивлений
где
Отсюда следует матричное уравнение для определения элемента При решении системы уравнений (3.8) воспользуемся результатами расчета узловых напряжений методом Гаусса по матричному уравнению (2.7-2.10). Поскольку матрица коэффициентов одинаковая Запишем преобразованную систему, начиная с третьего ключевого уравнения:
Завершим прямой ход Гаусса:
тогда Переведем
где При Определим значение коэффициента
Найдем корни характеристического уравнения вида (3.6)
Исходя из теоремы Ляпунова, система является статически устойчивой, поскольку оба корня содержат отрицательную вещественную часть. Кроме того, по корням характеристического уравнения можно определить вид переходного процесса при отклонении угла Dd (табл.9.1[4]). В рассмотренном примере система колебательно устойчива, изменения Dd(t)имеют вид затухающих гармонических колебаний с частотой около
Date: 2015-07-24; view: 513; Нарушение авторских прав |