Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Датчики случайных чисел





Датчики случайных чисел реализуют механизмы имитации стоха­стических факторов. Значения таких факторов характеризуются рас­пределениями вероятностей. Например, когда время между прихода­ми автомобилей на заправочную станцию задается величиной 10±3 ед. времени, подразумевается, что такое время является случайным фак­тором, значения которого равномерно распределены в интервале [7, 13] ед. времени.

Равномерное распределение вероятностей (Rectangular Distribution, Uniform Distribution) продуцируется функцией random(), которая вы­дает действительные случайные числа в диапазоне 0.0 - 1.0, и функ­цией randomlnt (min, max), которая выдает целые случайные числа в диапазоне от min до max.

Кроме равномерного распределения вероятностей в прикладных задачах широко используются также экспоненциальное распределе­ние и распределение Пуассона.


114


Часть 2. Имитационное моделирование


Дополнительные методы и средства имитации


115


 


Экспоненциальное распределение (Exponential Distribution) связано с моделированием простейших потоков. В таких потоках время между событиями распределено по экспоненциальному закону. Это распреде­ление характеризуется единственным параметром — средним значени­ем. Вызов функции ехроп(Меап) вернет в качестве результата значение случайного числа, выбранного из экспоненциального распределения со средним mean. Если в задаче задана интенсивность простейшего по­тока Int, то среднее время между событиями будет определяться как mean=l/ Int. Поэтому для имитации задержек между появлениями со­бытий следует воспользоваться вызовом функции expon(l/Int).

Распределение Пуассона (Poisson Distribution) тесно связано с экс­поненциальным распределением: оно характеризует количество собы­тий в простейшем потоке, наблюдаемое за определенный интервал времени. Если задать величину этого интервала (Т) и интенсивность потока (Int), то произведение Mean=(Int*T) будет определять среднее количество событий за интервал времени Т. Эта характеристика явля­ется единственным параметром функции poisson(Mean), которая ис­пользуется как датчик пуассоновских случайных чисел. Использова­ние функции poisson(Mean) возможно и для других задач, например для имитации количества записей в инвентаризационной ведомости, объемов производства деталей в течение рабочего дня и т. п. Функция poisson(Mean) всегда выдает случайные числа, которые являются по-ложительными и целыми.

Для более подробного знакомства с использованием других рас­пределений вероятностей следует обратиться к справочной информа­ции системы или специальной литературе.







Date: 2015-07-23; view: 358; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию