Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Как извлечь корень из произвольного комплексного числа?⇐ ПредыдущаяСтр 54 из 54
Рассмотрим уравнение , или, то же самое: . Здесь «эн» может принимать любое натуральное значение, которое больше единицы. В частности, при получается квадратный корень Уравнение вида имеет ровно корней , которые можно найти по формуле: Пример 16 Найти корни уравнения Перепишем уравнение в виде В данном примере , , поэтому уравнение будет иметь два корня: и . Теперь нужно найти модуль и аргумент комплексного числа : Еще более детализируем формулу: На чистовик так подробно оформлять, конечно, не нужно, это сделано мной для того, чтобы вам было понятно, откуда что взялось. Подставляя в формулу значение , получаем первый корень: Подставляя в формулу значение , получаем второй корень: Ответ: , При желании или требовании задания, полученные корни можно перевести обратно в алгебраическую форму. И напоследок рассмотрим задание - «хит», в контрольных работах почти всегда для решения предлагается уравнение третьей степени: . Пример 17 Найти корни уравнения , где Сначала представим уравнение в виде : Если , тогда Обозначим привычной формульной буквой: . В данном примере , а значит, уравнение имеет ровно три корня: , , Найдем модуль и аргумент комплексного числа : Еще раз детализирую формулу: Подставляем в формулу значение и получаем первый корень: Подставляем в формулу значение и получаем второй корень: Подставляем в формулу значение и получаем третий корень: Очень часто полученные корни требуется изобразить геометрически: Теперь берем аргумент первого корня и выясняем, чему равняется угол в градусах: . Отмеряем транспортиром и ставим на чертеже точку . Берем аргумент второго корня и переводим его в градусы: . Отмеряем транспортиром и ставим на чертеже точку . По такому же алгоритму строится точка Легко заметить, что корни расположены геометрически правильно с интервалом между радиус-векторами. Чертеж крайне желательно выполнять с помощью транспортира. Если вы отмерите углы «на глазок», то рецензент легко это заметит и процентов 90-95 поставит минус за чертеж. Уравнения четвертого и высших порядков встречается крайне редко, если честно, я даже не припомню случая, когда мне пришлось их решать. В этой связи ограничусь рассмотренными примерами. Для чего нужны комплексные числа? Комплексные числа нужны Желаю успехов! Решения и ответы: Пример 6: Решение: Пример 8: Решение: Представим в тригонометрической форме число . Найдем его модуль и аргумент. . Поскольку (случай 3), то . Таким образом: – число в тригонометрической форме. Пример 11: Решение: Представим число в тригонометрической форме: (это число Примера 8). Используем формулу Муавра : Пример 13: Решение: Пример 15: Решение: Автор: Емелин Александр
Высшая математика для заочников и не только >>> (Переход на главную страницу) Как можно отблагодарить автора?
Date: 2015-07-23; view: 465; Нарушение авторских прав |