![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Фагоцитоз
И.И. Мечников, занимаясь сравнительной эмбриологией и гистологией морских беспозвоночных, в 1882 г. открыл существование особого процесса в их организмах: определённые клетки, целомоциты или амебоциты, поглощали инородные частицы и в том числе микроорганизмы, попадающие во внутреннюю среду. Вокруг более крупных инородных тел эти клетки формировали отграничивающие гранулемы. Собственно открытие И.И. Мечникова состояло не в наблюдении поглощения клетками инородных частиц, а в осознании защитного значения этого процесса для всего организма, а не понимание его как пищеварительного для данной единичной клетки. Подобные процессы наблюдали и другие врачи и исследователи, в том числе в препаратах из очагов гнойного воспаления у людей, где особые белые клетки крови (лейкоциты), как амебы поглощали микроорганизмы и переваривали их внутри себя. Но принято было думать, что эти клетки болезнетворные, ибо видели их в больном месте — в очагах гнойного воспаления. Коллеги — современники И.И. Мечникова оценили его прозрение ни много ни мало как мысль гиппократовского масштаба. И.И. Мечников назвал эти клетки «пожирающими». А. Гроббен и Ф. Гейдер подсказали ему греческие корни, составившие термин «фагоциты». Любая живая клетка, в том числе и организма млекопитающих, поглощает вещества из внешней среды через специальные каналы для метаболитов в мембране, эндоцитозом отдельных молекул, пиноцитозом. Однако фагоцитоз — это особый процесс поглощения клеткой крупных макромолекулярных комплексов или корпускулярных структур. «Профессиональными» фагоцитами у млекопитающих являются всего два типа дифференцированных клеток — нейтрофилы и макрофаги. Фагоцит обхватывает своей мембраной поглощаемый объект (бактериальные или собственные повреждённые клетки, или иное), заключает его в мембранную везикулу, которая оказывается внутри фагоцита. Такие везикулы называют фагосомами. Цель фагоцитоза — полное биохимическое расщепление до мелких метаболитов содержимого фагосомы. Для этого у фагоцита есть специальные внутриклеточные органеллы — лизосомы, содержащие набор гидролитических ферментов с оптимумом pH примерно 4,0. В клетке фагосомы сливаются с лизосомами в фаголизосому, где и происходят реакции расщепления поглощённого материала. Кроме лизосом, в фагоцитах есть специальные ферментные системы: НАДФ–Н–оксидазы, супероксиддисмутаза, NO–синтазы, которые генерируют активные формы неорганических окислителей, — перексид водорода (Н2О2), супероксид анион (О2–), синглетный кислород (1O2), радикал гидроксила (OH–), гипохлорид (ОСl), оксид азота (NО+). Эти агрессивные окислители работают внутри клетки, а также на определённых этапах развития воспалительной реакции секретируются во внеклеточную среду. Нейтрофилы и моноциты созревают в костном мозге из стволовой кроветворной клетки и имеют общую промежуточную клетку–предшественницу. Нейтрофилы циркулируют в периферической крови и составляют бoльшую часть лейкоцитов крови — 60–70%, или 2,5–7,5 Как фагоциты «узнают», чтo им следует фагоцитировать? На доиммунном этапе защитных реакций распознающие возможности фагоцитов ограничены. И только иммунный механизм в виде синтеза АТ «приводит» к макрофагу доступное АТ разнообразие распознаваемых Аг. Известно 5 структур — Рц на клеточной мембране макрофагов, связывающих то, что макрофаг потенциально способен поглотить по механизму фагоцитоза.
Второй механизм сопряжения лимфоцитарного иммунитета с фагоцитами состоит в том, что на мембране фагоцитов есть молекулы — Рц для активных цитокинов, вырабатываемых иммунными лимфоцитами. Через них фагоцит воспринимает сигнал от лимфоцита, и в результате происходят существенные сдвиги во внутренней «энергетике» фагоцита. Через Рц к Назовем ещё два маркёра моноцитов/макрофагов: это CD115 — Рц для фактора роста моноцитов M–CSF (колониестимулирующий фактор моноцитов) и CD163 (Рц гемоглобина типа скевенджер, от англ. scavenger — мусорщик). На нейтрофилах идентифицированы эксклюзивные маркёры наружной мембраны — CD66A и CD66D. Функциональные «нагрузки» этих молекул пока неизвестны. По биохимическим свойствам они попадают в семейство так называемых раково–эмбриональных белков. Что происходит после того, как фагоцит поглотил объект извне в виде заключенного в мембрану пузырька — фагосомы? Происходят по крайней мере три процесса: расщепление поглощённого материала внутри фагоцита, продукция и секреция в межклеточное пространство литических ферментов и окислительных радикалов, продукция и секреция цитокинов. Первый из них — расщепление того, что фагоцитировано, до мелких продуктов метаболизма, которые клетка и вслед за ней организм способны вывести через природные системы выделения (почки и ЖКТ). Этот процесс идёт по одинаковым биохимическим механизмам и в нейтрофилах, и в макрофагах. Для этого у фагоцитов есть специальный «аппарат» литических ферментов (кислых протеаз и гидролаз), заключенных в особые органеллы — лизосомы; pH в лизосомах около 4. Мембрана фагосомы сливается с мембраной лизосомы, предоставляя лизосомным ферментам доступ к фагоцитированному веществу. В гранулах нейтрофилов содержатся литические ферменты, которые активированный нейтрофил в очаге выбрасывает в межклеточное вещество. Это коллагеназа, катепсин G, желатиназа, эластаза, фосфолипаза A2. Кроме этого, у фагоцитов есть специальные системы ферментов, генерирующие образование реакционно-способных свободных радикалов кислорода (супероксидного аниона О2–, синглетного кислорода 1O2), а также пероксида водорода. Фермент NO–синтаза генерирует образование радикала оксида азота (NO+). Эти радикалы осуществляют деструктивные реакции применительно к фагоцитированному объекту. Но, кроме того, фагоцит секретирует их в окружающую межклеточную среду, где они оказывают травмирующее действие, в том числе и на собственные ткани (табл. 3.6). Таблица 3.6. Бактерицидные биохимические механизмы фагоцитов и «встречные» биохимические механизмы «сопротивления» микроорганизмов, обеспечивающие выживание и даже размножение микробов внутри фагоцитов макроорганизма
* На примере бактерий Salmonella typhimurium (возбудитель брюшнотифозной лихорадки) и Mycobacterium tuberculosis (возбудитель туберкулёза). У S. typhimurium в ранние сроки имеет значение метаболическое противодействие бактерий кислородзависимым бактерицидным механизмам фагоцитов, в поздние — азотзависимым бактерицидным механизмам. У М. tuberculosis имеют значение оба метаболических механизма выживания внутри фагоцитов, но более существен механизм устойчивости к азотзависимой атаке фагоцитов. Макрофаги и нейтрофилы, активированные микробными продуктами, начинают продуцировать цитокины и другие биологически активные медиаторы. Макрофаги продуцируют интерлейкины (ИЛ–1, ИЛ–6, ИЛ–8, ИЛ–12), фактор некроза опухоли Названные медиаторы из фагоцитов создают в очаге внедрения внешних субстанций доиммунное воспаление в барьерной ткани, которое обеспечивает активацию кровеносных сосудов, дендритных клеток и лимфоцитов, «подготавливающую» возможность развития лимфоцитарного иммунного ответа. Только в макрофагах (в нейтрофилах нет) происходят образование внутри клеток комплексов из продуктов расщепления фагоцитированного вещества с собственными молекулами MHC–II и экспрессия этого комплекса на поверхность клетки с «целью» представления Аг для распознавания T–лимфоцитами. Таким образом, макрофаги способны осуществлять функции АПК. Без лимфоцитарного иммунитета, т.е. без лимфоцитов и их продуктов — цитокинов и АТ, защитные санирующие возможности фагоцитоза, однако, ограничены. Во-первых, доиммунное воспаление в ответ на распознавание и поглощение патогенного материала в целом количественно слабое, «холодное», не мощное. Микроорганизмы земной биосферы эволюционировали (и продолжают эволюционировать) таким образом, что многие из них «не боятся» фагоцитов, многие способны жить и размножаться именно в макрофагах: это микобактерии, сальмонеллы, лейшмании, листерии, трипаносомы, легионеллы, криптококки, гистоплазмы, иерсении, простейшие, риккетсии, вирусы, в том числе ВИЧ. Поэтому позвоночным для выживания «понадобилась» система защиты от инфекций более сильная, чем просто фагоцитоз. Во-вторых, фагоциты только расходуются в конкретной защитной реакции, они не пролиферируют и им не дано «запоминать» патоген, т.е. никакого усиленного «иммунитета» в отношении повторного проникновения того же патогена в организм на уровне фагоцитов не создаётся. Это уникальное свойство приобрели в эволюции только лимфоциты. И может быть, это — главный параметр позитивного естественного отбора, закрепившего лимфоцитарный иммунитет у многоклеточных, начиная с челюстных рыб. Однако в ряде ситуаций нельзя недооценивать, например, патофизиологические последствия доиммунной активации нейтрофилов непосредственно микробными продуктами. Так, при инфекции Toxoplasma gondii летальный некроз печени в первые 24–48 ч обусловлен «цитокиновым взрывом» именно из нейтрофилов. На нейтрофилах, как и на макрофагах, экспрессирован Рц CD14, который связывает комплексы ЛПС с ЛПC–связывающим протеином сыворотки (LBP), а также комплексы ЛПС с другими микробными продуктами (например, с эндотоксинами). Нейтрофилы — самые многочисленные из белых клеток в циркулирующей крови. Они первыми мигрируют из сосудов в очаг поражения в ткань [за счёт быстрой экспрессии нужных молекул адгезии — VCAM–1 (лиганд на эндотелии VLA–4) и CD11b/CD18 (лиганд на эндотелии ICAM–1)]. Например, всего за 1 ч после введения в перитонеальную полость мыши сублетальной дозы Toxoplasma gondii число нейтрофилов в перитонеальной полости возрастает с 2 до 25% от общего числа лейкоцитов. В очаге они быстро активируются и секретируют радикалы кислорода и литические ферменты. Связывание лиганда с Рц CD14 на нейтрофилах активирует довольно интенсивную выработку нейтрофилами TNF– Моноклональные АТ RDC6.8C5 к молекуле Gr–1, экспрессированной на нейтрофилах и эозинофилах мыши, при введении in vivo обладают свойством эффективно элиминировать гранулоциты, что позволяет использовать их в модельных экспериментах. Например, введение мышам D–галактозамина индуцирует экспрессию на клетках печени Рц для TNF– 3.5. Эндогенные пептиды–антибиотики Это одно из самых новых направлений исследований — изучения особых веществ — пептидов, состоящих из 13–80 АК, которые синтезируются с неких генов эукариотических клеток и обладают активностью антибиотиков, т.е. способны убивать бактерии. Функциональные пептиды образуются в клетке путём процессинга более крупных молекул белков–предшественников. Пептиды–антибиотики обнаружены в клетках растений, насекомых, лягушек, а также млекопитающих животных (кроликов, свиней, коров) и человека. По структуре пептиды–антибиотики разделяют на 3 группы.
Генетические дефекты пептидов–антибиотиков или необходимых для их функционирования кофакторов (например, ионных каналов, так как активность пептидов–антибиотиков «высокочувствительна» к ионной силе), возможно, коррелируют с развитием прогредиентно–текущей хронической патологии с инфекционными факторами в этиологии. Date: 2015-07-02; view: 708; Нарушение авторских прав |