Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Алгебраическое послесловие





 

Мы разобрали несколько примеров, в которых затрагивались пограничные вопросы алгебры, математического анализа и теории чисел. (Каждому направлению, которое мы наметили, можно было бы посвятить более подробную статью в «Кванте»!) В заключение покажем ещё, как можно смотреть на основных героев статьи — «сопряжённые числа» — с чисто алгебраической точки зрения.

Предположим, что у нас есть множество P чисел (или выражений с буквами, или ещё каких-то элементов), с которыми можно выполнять четыре действия арифметики с соблюдением обычных арифметических правил. Такое множество называется полем; поля образуют, например, рациональные и действительные числа. Если в поле P не разрешимо, скажем, уравнение x 2d = 0, то можно расширить его, рассматривая элементы вида p + qd, где p, q Î P, a √ d — новый символ, который при умножении сам на себя дает d, т.е. √ d ·√ d = d, так что

(p + qd)·(p' + q'd) = (pp' + qq'd) + (pq' + qp')√ d.

 

При d = –1 расширением поля вещественных чисел получаются комплексные числа.

В новом поле P 1 — «квадратичном расширении» поля P — есть интересное отображение λ = p + qd → λ = pqd (своеобразная «алгебраическая симметрия»), называемое сопряжением, с такими свойствами:

  1. Все элементы старого поля P переходят в себя;
  2. Все равенства, содержащие арифметические операции, при этом отображении сохраняются:
λ + μ = λ + μ; λ · μ = λ · μ; (10)

 

Это отображение является частным случаем так называемых автоморфизмов Галуа расширения P 1 поля P.

В задачах 8 и 9 мы видели пример «двукратного» расширения — присоединения √2 и затем √3, — в результате которого получилось поле с бо́льшим количеством автоморфизмов Галуа: кроме тождественного отображения, их уже три

(√2 → –√2, √3 → √3;
√2 → √2, √3 → –√3;
√2 → –√2, √3 → –√3),

 

и их «взаимодействие» устроено так же, как во множестве самосовмещений прямоугольника.

Оказывается, к основному полю можно присоединять корни любого алгебраического уравнения. Автоморфизмы возникающего нового поля — предмет одной из красивейших ветвей алгебры XIX–XX века, теории Галуа, которая позволяет, в частности, исследовать вопрос о разрешимости уравнений в радикалах ([13], [14]).

Мы закончим эту статью набором задач, в основном продолжающих уже затронутые темы, но требующих иногда и новых соображений, и обещанным списком литературы.

 

Date: 2015-07-02; view: 311; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию