Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Соответствует точке в плоскости комплексного переменного: i ALPHA e 2 page





Очередной зигзаг космология совершила в 30-х годах, когда выяснилось, что наблюдательные данные количественно не согласуются с предсказаниями модели Фридмана при использовании данных Хаббла. В соответствии с ними время существования Вселенной было (2-3)*10**9 лет, в то время как наблюдения старых звезд свидетельствовали, что их время жизни ~10*10**9 лет. Простое сопоставление приведенных цифр приводило к явной нелепости: звезды существовали дольше, чем Вселенная. К этому физическому нонсенсу добавились случайные обстоятельства: пара неудачных фраз в основополагающих работах Фридмана, принадлежность одного из основоположников теории нестационарной Вселенной - аббата Ж.Леметра к Ватиканской академии, президентом которой он стал впоследствии, и т.д. В результате теория Фридмана частью ученых была объявлена ересью, занятие которой было не только бесперспективно, но и могло иметь некоторые последствия, поскольку на ней лежала печать фидеизма. Модель Фридмана недолго подвергалась остракизму. Вскоре после войны данные Хаббла уточнились и основное противоречие было устранено. Оказалось, что по новым данным в рамках модели Фридмана Вселенная существует ~10*10**9 лет`. Блестяще подтвердились и другие выводы, которые следовали из модели Фридмана. -----------------------------------------------------------` В соответствии с современными данным время существования Вселенной (15-10)*10**9 лет. Подробнее о модели Фридмана см. в кн.: Вайнберг С. Первые три минуты. М.: Энергоиздат, 1981; Новиков И.Д. Эволюция Вселенной. М.: Наука, 1983. ----------------------------------------------------------- К таковым следует отнести существование реликтового излучения, предсказанного в рамках фридмановской модели Г.Гамовым в 1948 г. В соответствии с этим предсказанием во Вселенной должно было существовать микроволновое изотропное излучение с температурой 1-10 K. В 1965 г. американские инженеры-радиоастрономы А.Пензиас и Р.Вильсон обнаружили изотропное излучение с температурой 2.7 K, которое и было названо реликтовым. Большим успехом Фридмановской космологии явилась количественная интерпретация доли гелия во Вселенной (~25% по массе). В середине 60-х годов в Советском союзе на базе фридмановской космологии были выдвинуты идеи объяснения барионной асимметрии Вселенной: существования протонов при отсутствии антипротонов. Эти идеи разрабатывались впоследствии в рамках объединенной теории поля и количественно подтвердились наблюдаемыми данными барионной асимметрии. Успехи фридмановской космологии привели к очередному крену в научном общественном мнении, когда эта модель была "канонизирована" и многими объявлена истиной в конечной инстанции. Но как раз в этот период (конец 70-х годов) начали подробно выяснять самосогласованность фридмановской теории, и оказалось, что наиболее интересная часть эволюции Вселенной, и в частности первые мгновения, прошедшие после начала ее расширения, очень плохо согласуются с духом и буквой фридмановской модели. Возникла, и вполне закономерно, необходимость в ревизии фридмановской концепции описания "возникновения" Вселенной. К этому же выводу с неизбежностью подводит также и прогресс в теории элементарных частиц и особенно в той ее части, которая касается объединения взаимодействий. Описанию синтеза физики элементарных частиц и космологии будут посвящены разд.6-9 этой главы. Итак, подводя итоги, можно сказать, что фридмановская модель хорошо описывает эволюцию Вселенной на всем ее протяжении, кроме, пожалуй, первых самых интересных мгновений. В заключение следует сделать еще одно поучительное замечание. Фридман свои основополагающие работы сделал на основе ОТО. Однако в 1934 г. английские астрофизики Е.Милн и В.Маккри продемонстрировали, что основные методы фридмановской космологии можно получить и в рамках ньютоновской теории тяготения. Нам вообще кажется, что фактором, определяющим закон эволюции Вселенной, является не динамический закон, а ее геометрия. Динамика расширения следует из геометрических особенностей Вселенной. Изложению этой точки зрения будет посвящен разд.3. 2. НЕКОТОРЫЕ ЗАМЕЧАНИЯ О ТЕРМИНОЛОГИИ Едва ли в какой-либо еще науке существует бо'льшая путаница в терминологии, чем в космологии. Вероятно, это не случайно. Определение понятия - операция подведения его под более широкое понятие. А что может быть шире понятия "Вселенная"? Именно поэтому авторы серьезных монографий и популярных статей вкладывают в это понятие свое содержание, как правило, не давая себе труда пояснить его. Для дальнейшего попытка определения (или по крайней мере пояснения) основных понятий необходима. Обычно под понятием "Вселенная" подразумевается все сущее, но часто вкладывают и другое содержание: Вселенная это область, наблюдаемая нашими приборами. Размеры этой области приблизительно равны 10**28 см. Но здесь неизбежен вопрос. Почем то, что мы наблюдаем, и есть все сущее? Не является ли подобное отождествление отражением атавистического инстинкта, который был свойственен человеку, впервые задавшему себе вопрос о природе его "мира"? Для первобытного человека этот мир отождествляется с областью его проживания. Затем, уже после возникновения зачатков цивилизации, под Вселенной понималась Солнечная система, окруженная хрустальной сферой с находящимися на ней звездами. Лишь после создания Галилеем телескопа удалось показать, что сфера - лишь красивая фантазия и расстояния до звезд вовсе не одинаковы. Только в начале этого столетия астрономы пришли к заключению о существовании гигантских островов звезд галактик. И наконец, сравнительно недавно поняли, что галактики не самые большие объекты. Существуют скопления галактик (радиус 10**24 - 10**26 см), которые располагаются в области с размерами ~10**28 см. Соответствующий объем иногда (а астрономы обычно) называют Метагалактикой. Из этого краткого исторического экскурса следует, что "все сущее" для человека обычно отражает уровень его знаний (или заблуждений), и поэтому тождество: Вселенная == всему сущему == наблюдаемому миру абсолютно необосновано. Поэтому необходимо далее условиться о терминологии. Мы будем называть наблюдаемую приборами область Метагалактикой. Под Вселенной мы будем понимать "все сущее" или, более конкретно, все, что можно представить себе на основе современных теоретических воззрений. Очевидно, что такая "теоретическая Вселенная" отнюдь не должна совпадать с наблюдаемым объемом. "Все сущее" отражает уровень знаний о природе; мы будем включать в это понятие не только наблюдаемую область пространства, но и все, что можно окинуть мысленным взором. В дальнейшем мы приведем аргументы в пользу того, что такая Вселенная существенно превышает размеры Метагалактики, но, вероятно, и она - лишь отражение уровня наших знаний. Отметим также, что модель Фридмана описывает не Вселенную в целом, а эволюцию Метагалактики. Мы будем использовать ее только для этой цели. 3. ЭВОЛЮЦИЯ МЕТАГАЛАКТИКИ КАК ОТРАЖЕНИЕ ЕЕ ГЕОМЕТРИИ Как известно, любая математическая формулировка физической задачи содержит, кроме уравнений, описывающих эволюцию состояния во времени, также постулирование начальных и граничных условий. Физическая космология - наука об эволюции Метагалактики - не является исключением. Кроме использования уравнений ОТО, следует сформулировать начальные и граничные условия. В наиболее четкой форме впервые подобная операция была сделана Фридманом, который предположил, что Метагалактика всегда была изотропной и однородной. иначе говоря, в любой момент своей эволюции в Метагалактике все направления равноправны (изотропия), а плотность материи одинакова. Прообразом такой Метагалактики является двумерная сфера, плотность вещества которой постоянна для любого момента времени. Здесь полезно отметить, что условия Фридмана неравноправны для пространства и времени. В приведенном выше примере плотность вещества постоянна в пространстве (вдоль поверхности сферы) но не во времени. С течением времени вследствие расширения или сжатия плотность вещества изменяется. Граничные и граничные условия в форме, предложенной фридманом, получили в дальнейшем название космологических постулатов. Космологические постулаты, выдвинутые вначале из соображений простоты и критериев эстетики (симметрия), впоследствии неоднократно подвергались опытной проверке. Изложим кратко результаты этих проверок. Изотропия Метагалактики прекрасно подтверждается в процессе исследования углового распределения реликтового излучения. Оно заполняет всю Метагалактику и поэтому может служить критерием ее симметрии. С высокой степенью точности никаких отклонений от изотропии Метагалактики до сих пор (на конец 1986 г.) обнаружено не было. Хуже обстоит дело с постулатом однородности. Известно, что Метагалактика неоднородна. Существуют острова высокой концентрации вещества: звезды, галактики, скопления галактик. Однако наибольшие масштабы таких островов в 10**2 - 10**3 раз меньше размеров Метагалактики. Поэтому с такой точностью (10**-3 - 10**-2) можно полагать Метагалактику однородной. Мы вместе с другими космологами примем этот постулат однородности. Основные космологические постулаты, на которых базировался Фридман, в высшей степени нетривиальны. Прежде всего их нужно согласовать с основным принципом теории относительности - принципом причинности, о чем речь пойдет дальше. Здесь нас будет интересовать другой аспект, связанный с космологическими постулатами. Оказывается, космологические постулаты - настолько сильные предположения, что из них следуют многие основные черты эволюции Метагалактики. Разумеется, такие силы существуют. Но если допустить справедливость космологических постулатов, то эти силы должны соответствовать закону всемирного тяготения или его обобщению - ОТО`. -----------------------------------------------------------` Подчеркнем, что это утверждение также включает допущение: силы, действующие между частицами, являются силами притяжения. ----------------------------------------------------------- Здесь мы не будем рассматривать полную аргументацию этого заключения, а лишь наметим его вывод. Отметим прежде всего, что космологические постулаты чрезвычайно сильно сужают выбор геометрии Метагалактики. Наблюдаемая Метагалактика трехмерна, а трехмерное пространство может соответствовать космологическим постулатам лишь в трех случаях: если пространство характеризуется постоянной отрицательной кривизной (пространство Лобачевского), если пространство имеет нулевую кривизну (пространство Евклида), если пространство характеризуется постоянной положительной кривизной (трехмерная сфера). Представить на бумаге все эти трехмерные фигуры невозможно. Однако хорошим наглядным аналогом трехмерной сферы является двумерная сфера. В дальнейшем мы и будем пользоваться для наглядности этим образом. Выберем далее в нашем изотропном и однородном пространстве три точки A, B, и C, расположенные на малых расстояниях друг от друга. Рассмотрим сначала две точки A и B. Вектор r|| является AB единственным выделенным направлением в нашем изотропном пространстве. Поэтому скорость v|| движения этих двух точек AB имеет только относительный характер, причем оба вектора коллинеарны. Иначе говоря, в пространствах постоянной кривизны осуществляется равенство v|| = H(r,t) r|| (56) AB AB где функция H(r,t), казалось бы, зависит от обоих аргументов r и t. Но далее, несколько модифицируя рассуждения Е.Милна, мы покажем, что в действительности вследствие симметрических свойств пространства функция H=H(t), т.е. она не зависит от вектора r. Для этого рассмотрим точки A, B, C. Поскольку мы предполагаем, что размеры области w малы, то ее можно локально описывать геометрией Евклида. Тогда справедливы правила векторного сложения: r|| = r|| + r||, (57) AB AC CB v|| = v|| + v||. (58) AB AC CB Но очевидно, что равенства (57), (58) можно совместить с соотношением (56) лишь в случае, если H=H(t), т.е. зависит исключительно от времени. ===РИС.6 В наших рассуждениях неявно предполагалось, что эволюция области w автономна; оставшаяся область V-w (V объем всей сферы) не влияет на динамику малой области w. Однако это предположение также является следствием основных космологических постулатов или симметрии пространств постоянной кривизны. Действительно, если выбрать малый объем в форме сферы, то, допуская, что силы, действующие между частицами, - силы притяжения, нетрудно понять (рис.6), что любому элементу F большой сферы, действующему на микросферу, будет соответствовать элемент G, уравновешивающий это притяжение. Поскольку это рассуждение верно для любых пар элементов F и G, то это означает, что объем V-w не действует на объем w и, следовательно, эволюция последнего происходит самостоятельно и независимо от объема V. Поэтому, рассматривая эволюцию малого объема, мы моделируем эволюцию всего объема. Итак, в пределах объема w v|| = H(t) r|| (59) AB AB для любых пар точек A и B. Уравнение (59) можно переписать в форме dr|| / dt = H(t) r|| (60) AB AB Рассмотрим далее два случая. 1. Функция 1/H(t) разлагается в ряд Тейлора в окрестности t=0. 2. Функция 1/H(t)=const, т.е. не разлагается в ряд Тейлора. Первый случай. Пусть 1/H(t)=a|+b|t+...(a|,b| 1 1 1 1 постоянные) Допуская, что b /= 0 и используя трансляционную инвариантность времени Вселенной, т.е. совершая замену a|+b|t -> b|t, получаем уравнение dr|| / dt = (br|| / t) 1 1 1 AB AB (b=1 / b=const), решением которого является функция b r|| ~ t|. (61) AB Поскольку точки A и B произвольны, то зависимость (61) отражает известную степенную зависимость масштабного фактора от времени в модели Фридмана. Далее можно, постулируя статистические свойства материи в Метагалактике, определить численное значение параметра b, а основываясь не свойствах симметрии пространства, вывести полное решение, полученное Фридманом на основании ОТО (напомним, что зависимость (61) получена для малых значений времени t|, отсчитываемого от k начала расширения). Теперь рассмотрим второй случай, когда H(t)=const. Он также соответствует двум различным физическим картинам. 1. H /= 0. Тогда решение уравнения (60) имеет вид Ht r|| ~ e||. (62) AB Расстояние между двумя точками очень быстро (экспоненциально) увеличивается с ростом времени. Можно показать, что в этом случае плотность материи остается неизменной: RO = const (t). Зависимость (62) была получена на заре космологии де Ситтером`, но была отвергнута научной общественностью именно из-за странной зависимости RO(t). Было неясно, каким образом быстрое изменение объема системы не приводит к изменению плотности. Для всех известных тогда форм материи (вещество, излучение) оба основных вывода, следующих из модели де Ситтера, противоречили друг другу. Лишь сравнительно недавно выяснилось, что существует третья форма материи - физический вакуум, который удовлетворяет обоим выводам, следующим из стационарной (RO=const) модели де Ситтера. -----------------------------------------------------------` Модель Вселенной была разработана нидерландским астрономом В. де ситтером в 1917 г. на основе общей теории относительности. Подробное изложение модели де Ситтера в ее первоначальной интерпретации содержится в кн.: Толмен Р. Относительность, термодинамика и космология. М.: Наука, 1974. ----------------------------------------------------------- 2. Наконец, остается последний случай H=0. Этот случай соответствует равенству r|| = const(t). Все взаимные расстояния (также как и другие физические характеристики) не изменяются со временем. Метагалактика полностью статична, что соответствует космологической модели Эйнштейна. ТАким образом, мы привели аргументы (которые при более детальном анализе можно сделать более строгими) в пользу того, что космологические постулаты о геометрии Метагалактики (Вселенной) в значительной степени определяют динамику ее эволюции. 4. ПРОБЛЕМЫ ФРИДМАНОВСКОЙ КОСМОЛОГИИ Фридмановская космология согласуется со всеми наблюдательными данными. Однако при анализе замкнутости, самосогласованности фридмановской модели возникают многие проблемы, на которые предпочитали не обращать внимания, концентрируя акценты на ее достижениях. Здесь мы остановимся на двух (из многих) проблемах, которые нам представляются наиболее существенными. С_и_н_г_у_л_я_р_н_о_с_т_ь. Решение (61), которое соответствует модели Фридмана, приводит к заключению, что при t|=0 радиус Метагалактики был равен нулю, и, u следовательно, плотность RO вещества в этот момент равнялась бесконечности. Такая ситуация называется сингулярностью. Этот результат противоречит всему физическому опыту. При решениях многих физических задач в решениях возникают бесконечности, однако оказывается, что в уравнениях, описывающих данное явление, допущена идеализация. При увеличении одного (или нескольких) параметров возникают новые процессы, которые препятствуют возникновению бесконечности. Типичное проявление подобного феномена кулоновское взаимодействие на малых расстояниях. Прямолинейное использование формулы F = e**2 / r**2 для описания взаимодействия двух электронов с зарядом e приводит к ошибочным результатам при расстояниях между электронами меньше 10**-11 см. В случае r < 10**-11 см начинают играть роль квантовые поправки, которые требуют применения квантовой электродинамики. Однако, как теоретически показали Л.Д.Ландау, И.Я.Померанчук и Е.С.Фрадкин, при r ~< 10**-32 10**-33 см квантовая электродинамика становится также неприменимой. По всеобщему убеждению, при столь малых расстояниях нужно учитывать все взаимодействия, в том числе и гравитационное, что должно привести к ликвидации сингулярности в рамках квантовой интерпретации закона Кулона при r -> 0. В соответствии с приведенными соображениями нельзя использовать закон Кулона при r -> 0. Проблема сингулярности не нова. Еще А.Эйнштейн сомневался в применимости классической (неквантовой) теории - ОТО при очень больших плотностях. Однако он не мог предложить количественных оценок для пределов применимости ОТо. Строго говоря, и сейчас нет их точного определения. Однако, по всеобщему убеждению, ОТО неверна при приближении к планковским величинам: длина l| ~ (HP * G / c**3)**(1/2) ~ p 10**-33 см, время t| ~ (HP * G / c**5)**(1/2) ~ 10**-43 с и p плотность RO| ~ c**5 / HP * G**2 ~ 10**94 г/см**3. p Последняя величина чудовищно велика: масса метагалактики равна "только" 10**55 г. Подчеркнем, однако, что нарушение ОТО при планковских величинах полагают обязательным. Происходит ли оно существенно ранее - неизвестно, поскольку экспериментальные данные весьма далеки от планковских величин. Напомним еще раз, что наименьшие измеренные расстояния r ~~ 10**-16 см. Избавиться от сингулярности путем прямолинейного отказа от основных космологических постулатов невозможно. Как показали английские физики Р.Пенроуз и С.Хокинг, при весьма общем и естественном условии - выполнении энергодоминантности EPS+p>0 (EPS - плотность энергии, p давление) сингулярность в рамках ОТО неизбежна. П_р_о_б_л_е_м_а г_о_р_и_з_о_н_т_а. В соответствии с теорией относительности информация от одного объекта к другому распространяется со скоростью v =< c. Следовательно, если в некоторый момент времени t=0 два объекта располагались в одной точке, то через некоторое время t=t| они будут причинно связаны лишь при условии, если 1 расстояние r между ними удовлетворяет условию r =< ct|. 1 Пусть величина t| = t| (t| - время существования 1 u u Метагалактики), тогда расстояние R=ct| есть максимальное u расстояние, причинно связывающее две произвольные точки в метагалактике, например Землю и некоторую галактику. Расстояние R=ct| называется горизонтом. Если подставить в u выражение для R значение t| ~~ 3*10**17 с, вычисленное в u соответствии с моделью Фридмана или по времени существования старых звезд, то легко получить, что R ~~ 10**28 см, что совпадает с наблюдаемой областью Вселенной - Метагалактикой. Расширение реализуется медленно. В формуле (61), определяющей зависимость размеров R Метагалактики от времени, b<1, и, следовательно, расширение происходит медленнее, чем увеличение размеров горизонта. Поэтому если сейчас обе величины совпадают, то это означает, что ранее Метагалактика была разбита на множество причинно не связанных областей. Этот факт превращается в серьезную проблему, если его сопоставить с поразительной изотропией Метагалактики. Как различные части Метагалактики, причинно не связанные между собой, могли подстроиться друг к другу так, чтобы возникла совершенная изотропная (сферическая или квазисферическая) геометрия? Этот вопрос и составляет проблему горизонта. 5. ФИЗИЧЕСКИЙ ВАКУУМ Общепризнанно, что физическая терминология достаточно несовершенна. Вероятно, есть две основные причины, порождающие недоразумения. Во-первых, историческая: когда явление только начинает изучаться и возникает его название, отражающее лишь малую часть его истинной сущности. Затем термин прочно входит в быт физики, после чего выясняется, что суть явления совсем иная, чем это полагалось вначале. Типичным примером подобного недоразумения является введенный Г.Вейлем термин "калибровочная инвариантность", отражавший первоначальное представление его автора об электродинамике как явлении, которое остается неизменным при изменении пространственно-временных масштабов. Другой общей причиной несовершенства терминологии является принципиальная неадекватность слов (терминов) и глубинной сути явлений. Здесь вполне уместно напомнить знаменитый афоризм Тютчева: "Мысль изреченная есть ложь". Термин "физический вакуум" несовершенен по обеим причинам. Прежде всего, еще из школьной физики мы помним, что он используется для определения весьма разреженных газов. Кроме того, с середины 20-х годов и особенно после замечательной работы П.Дирака, предсказавшего в 1928 г. существование позитрона, термин "физический вакуум" завоевывает узаконенной положение в совершенно иной области - в квантовой теории поля. В первоначальной трактовке Дирака физический вакуум - система частиц, в которой отсутствуют позитроны. В рамках квантовой электродинамики это означает, что система электронов и фотонов включает также и физический вакуум. В трактовке Дирака, которая, на наш взгляд, сохранила свое значение в рамках электродинамики и до сих пор, физический вакуум - это бесконечная совокупность электронов с отрицательной энергией. Такая система обладает бесконечной энергией, и ее непосредственно никто не наблюдал. Однако это свойство Дирак возвел в ранг постулата. В соответствии с такой картиной Дирак предсказал существование позитрона - "дырки" в физическом вакууме. Эта картина казалась настолько фантастичной, что до 1032 г., когда был открыт позитрон, картину, нарисованную Дираком, большинство физиков полагали курьезным заблуждением. Ситуация в общественном мнении полностью изменилась после открытия позитрона. Физический вакуум сделался хотя и не наблюдаемой, но физической реальностью. Однако определения или, точнее, представления о физическом вакууме модифицировались. Сохранилась идея, что вакуум - система, в которой отсутствуют реальные частицы данного сорта. Однако содержание этого понятия существенно обогатилось. Кроме электронно-позитронного вакуума, ввели представления о вакууме для других частиц. Наиболее глубокое развитие понятие вакуума получило после обобщения вакуума Дирака на любые фермионы (помимо электронов), а также и на бозоны. Сейчас подразделяют физический вакуум на бозонный и фермионный. Выяснилось также, что физический вакуум может соответствовать не только полному отсутствию реальных частиц, но и понятию минимальной энергии системы. В случае дираковского вакуума оба определения совпадают. Однако для некоторых бозонных полей оба определения могут быть не вполне эквивалентны. частицы данного сорта могут существовать как реальные объекты, однако система в целом включает и вакуумное состояние. Необходимо лишь, чтобы энергия системы как функция поля была минимальной. Вероятно, наиболее впечатляющим доказательством существования вакуумной материи является беспрецедентное по точности предсказание взаимодействия реальных частиц с вакуумом. С первого взгляда может показаться, что автор запутался в дефинициях. Как реальная частица может взаимодействовать с ненаблюдаемыми частицами? Оказывается, может. В рамках классических представлений сомнение в подобном взаимодействии вполне правомочно. Однако в квантовой теории поля существуют виртуальные частицы, время жизни которых определяется принципом неопределенности: t ~ HP / m*c**2, где m - масса вакуумной частицы. Например, для электрона t~~10**-21 с. Это время слишком мало, чтобы частицы (В данном случае электроны с отрицательной энергией) можно было наблюдать непосредственно. Однако этого времени вполне достаточно, чтобы наблюдать взаимодействие реальных частиц с коллективом вакуумных частиц. Это взаимодействие проявляется в изменении характеристик реальных частиц. Так, аномальный магнитный момент электрона (отклонение магнитного момента электрона от боровского магнетона), обязанный взаимодействию электрона с вакуумом и вычисленный по правилам квантовой электродинамики, совпадает с наблюдаемой величиной с точностью до одиннадцатого знака! В результате взаимодействия электрона, находящегося в атоме водорода, с вакуумом возникает спектральная линия. Ее расчетное значение v| = 1057.91 +- 0.01 МГц, t экспериментальное - v| = 1057.90 +- 0.06 МГц. e Таким образом, физический вакуум - это новый тип реальной существующей материи. Возникает вопрос: можно ли наглядно интерпретировать свойства вакуума, не прибегая к понятию частиц с отрицательной энергией, которые не наблюдаются непосредственно в природе? По-видимому, для фермионов эта трудность остается. Однако для бозонов можно моделировать вакуум, используя известные представления, заимствованные из квантовой физики макроскопических тел`. -----------------------------------------------------------` В дальнейшем изложении модели вакуума мы следуем ст.: Киржниц Д.А., Линде А.Д. Фазовые превращения в физике элементарных частиц и космологии // Наука и человечество. М.: Знание, 1982, С.165. ----------------------------------------------------------- Бозоны, находясь в основном состоянии, обладают следующим уникальным свойством. С увеличением числа даже электронейтральных частиц и в пренебрежении гравитационными силами увеличивается их взаимное притяжение. Иначе говоря, совокупность таких бозонов стремится увеличить свою концентрацию. Это свойство обусловлено квантовомеханическими особенностями бозонов, а сам ансамбль таких частиц называется бозе-конденсатом. Подобные системы нередко реализуются в макроскопической физике. Например, сверхпроводимость при низких температурах обусловлена свойствами бозе-конденсата. В бозе-конденсате увеличение концентрации частиц в основном состоянии определяется не увеличением сил притяжения, а уменьшением эффективного давления в системе. Давление уменьшается, следовательно, уменьшается препятствие к увеличению концентрации. Такая парадоксальная ситуация приводит иногда к весьма непривычному уравнению состояния p = -EPS. (63) Обычно в уравнениях состояния, связывающих давление p и плотность энергии вещества EPS, обе величины имеют одинаковый знак. Отметим, что полная плотность энергии материи остается неизменной, если выполняется уравнение состояния (63). Эти свойства вакуума (постоянная плотность и справедливость уравнения (63)) в рамках ОТО аналогичны описываемым взятом с соответствующим знаком LAMDA-членом в уравнении Эйнштейна. Далее возникает вопрос, существуют ли частицы, которые четко реализуют основные свойства бозе-конденсата, и в частности уравнение состояния (63). Оказывается, что гипотетические частицы Хиггса, являющиеся неотъемлемым элементом объединенной теории электрослабого взаимодействия, хорошо моделируют описанные свойства бозе-конденсата. Спин частиц Хиггса равен нулю, и именно они обеспечивают наличие массы у переносчиков слабого + 0 взаимодействия: W|-, Z|-бозонов. Частицы Хиггса пока не были обнаружены на ускорителях из-за их большой массы и (или) слабости взаимодействия с другими частицами. Отметим, что в отличие от частиц с отрицательной энергией нет никаких принципиальных трудностей в наблюдениях частиц Хиггса. Полагают, что их массы превышают 100 ГэВ и поэтому на современных ускорителях их нельзя воспроизвести. На рис.7 (кривая 1) представлена типичная зависимость потенциала взаимодействия хиггсовских частиц V(FFI) от значения описывающего их поля. На этой кривой легко заметить два минимума: один соответствует значению поля FI=0, второй соответствует значению FI=FI|/=0. Важно отметить, что 0 V(0)>V(FI|). Следовательно, в принципе система из состояния 0 FI=0 может спонтанно "скатиться" в состояние FI=FI|, 0 обратный же процесс без внешнего воздействия невозможен. Значение FI=FI| соответствует абсолютно устойчивому 0 состоянию вакуума скалярных частиц Хиггса. ===РИС.7 Д.А.Киржниц и А.Д.Линде показали, что зависимость V(FI) существенно зависит от температуры конденсата T|. При Т>T| c c минимум при FI=FI| исчезает (кривая 2) и остается один 0 минимум - при FI=0. Кривая V(FI) становится симметричной относительно прямой FI=0, перпендикулярной оси абсцисс. На кривой 1, соответствующей T -> 0, такая симметрия отсутствует. По современным воззрениям, возникновение асимметрии скалярного вакуума приводит к появление массы у частиц. Любопытная ситуация возникает при изменении (например, уменьшении) температуры T. При высоких температурах реализуется симметричная зависимость 2; по мере уменьшения температуры при некотором критическом значении T=T| c появляется второй минимум, соответствующий кривой 1. Симметрия системы (вакуума) изменилась, т.е. в ней произошел фазовый переход. Любопытная ситуация возникает при изменении (например, уменьшении) температуры T. При высоких температурах реализуется симметричная зависимость 2.; по мере уменьшения температуры при некотором критическом значении T=T| появляется второй минимум, соответствующий кривой 1. Симметрия системы (вакуума) изменилась, т.е. в ней произошел фазовый переход.









Date: 2015-07-01; view: 256; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию