Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Соответствует точке в плоскости комплексного переменного: i ALPHA e 1 page





Cos ALPHA + i sin ALPHA (52) Таким образом, cos ALPHA есть значение действительной, i ALPHA а sin ALPHA - мнимой части комплексного числа e

I ALPHA Модуль комплексного числа! e

С геометрических позиций эта интерпретация эквивалентна i ALPHA утверждению, что функция e

Есть точка в двумерной декартовой плоскости с абсциссой, равной cos ALPHA, и ординатой sin ALPHA. Эта точка лежит на окружности с радиусом, равным единице. Учтем далее, что ALPHA принимает произвольное действительное значение. следовательно, число i ALPHA e

При любом значении ALPHA образует окружность с единичным радиусом. Инвариантность относительно преобразования (49) означает, что вектор состояния PSIG может находиться на такой окружности, которая обозначается 1 символом S| (сфера размерности единица). Поэтому естественно 1 допустить, что окружность (сфера S|) и является слоем над базой - привычным пространством Минковского. Напомним, что в данном случае рассматриваются только электромагнитные силы, поэтому следует отождествлять базовое пространство с пространством Минковского. При совместном действии электромагнитных и гравитационных сил следовало бы базой полагать пространство Римана. Нетрудно определить и связность расслоенного пространства, соответствующего данному статическому случаю. Как обычно, начало координат отождествим с заряженным телом отсчета. Пусть расстояние до данной точки в пространстве Минковского (Евклида) равно R. Тогда следует слой (плоскость окружности) расположить перпендикулярно вектору R, проходящему через центр окружности. Характеристикой расслоенного пространства, связывающего взаиморасположение соседних слоев и физическую ситуацию, является плотность центров окружностей (слоев) на окружности в базе с радиусом R. Следует положить, что эта плотность равна потенциалу!e!/R, где e - заряд тела отсчета. Естественно, что, вводя слои-окружности, мы увеличиваем на единицу размерность пространства. Нужно четко представить (вообразить), что слой - это не геометрическое место точек в базе, а автономная геометрическая конструкция над базой. Наше мышление устроено таким образом, что реально представить это дополнительное, пятое измерение мы не в состоянии. Поэтому некоторое упрощенное представление о дополнительном измерении может дать двумерная плоскость (база), к каждой точке которой "прикреплена" окружность с центром в этой точке. Плотность слоев убывает с увеличением расстояния от начала координат - тела отсчета с зарядом e. Хотя наши рассуждения относились к простейшему статическому случаю, однако геометрическая интерпретация электромагнитного взаимодействия на основе расслоенного 1 пространства со слоем S| сохраняется и в общем, нестатическом случае с единственным различием: связность такого расслоенного пространства определяется не только скалярной функцией FI, но и 4-векторным потенциалом A|, в ю котором функция FI является лишь временной компонентой. Трактовка потенциалов как связностей оправдывается и тем, что связности определены неоднозначно. Например, связность, представленная на рис.3, определена с точностью до трансляционной инвариантности в слое. Здесь полезно сделать одно отступление. Хотя мы исходили из концепции расслоенного пространства, однако исторически геометрическая интерпретация электромагнетизма, основанная на введении пятого дополнительного измерения, была введена Т.Калуцей в 1921 г. задолго до формирования идей расслоенного пространства. В ту далекую эпоху вследствие торжества общей теории относительности (количественное согласие предсказаний ОТО с наблюдениями отклонения света в гравитационном поле Солнца) возникла идея объединения известных тогда взаимодействий (гравитационного и электромагнитного) на геометрической базе. С этой целью предпринимались попытки модифицировать физическую геометрию, обобщая 4-мерную геометрию Римана. В частности, Калуца пытался объединить взаимодействия, введя пятое измерение в рамках многомерной римановской геометрии, т.е. обобщая метрику Римана. В этой теории простейшая метрика объединенного взаимодействия имела вид: ! g|| + A|A| A|! ! юv ю v ю! g|| =!! (53) AB! A| 1! ! v!. Индексы ю,v пробегают значения 1,2,3,4. Компоненты метрического тензора g|| представляют риманово пространство юv ОТО. Индексы A,B могут иметь значения от 1 до 5. A| ю 4-вектор - потенциал электромагнитного поля. Можно показать, что метрика (53) соответствует 4 1 расслоенному пространству - произведению R| x S| - и представляет совместное действие гравитационного и электромагнитного полей`. -----------------------------------------------------------` Вывод уравнений электродинамики из метрики (53) см. в ст.: Ходос А. Теории Калуцы-Клейна: общий обзор // УФН. 1985. Т.146, #4, С.647. ----------------------------------------------------------- Несмотря на красоту идей Калуцы, к концу 30-х годов интерес к пятимерным теориям был практически утрачен. Физиков (в том числе и Эйнштейна), занимающихся объединением взаимодействий на базе многомерного пространства, посчитали чудаками, а само это направление бесперспективным. Для подобной пессимистической оценки было немало оснований. Перечислим их в том порядке, который (по мнению автора) отражает их важность. 1. К тому времени четко определилось воззрение, что электромагнитное и гравитационное взаимодействия не исчерпывают все силы в природе. Появились доказательства существования сильного и слабого взаимодействий, кардинально отличных от первых двух. Для вновь открытых взаимодействий не было места в оригинальной схеме Калуцы или в схемах его современников. 2. В схеме не было оснований для выбора размеров окружности слоя. Было лишь ясно, что эти размеры очень малы (<<10**-13 см, т.е. много меньше радиуса действия ядерных сил), однако никакие столь малые характеристические размеры не имели теоретических основ. 3. Схема Калуцы не приводила ни к каким новым предсказаниям или интерпретациям фундаментальных фактов. 4. Физическое пространство в рамках этой теории имело довольно странный вид: три пространственных координаты имели огромную протяженность (~10**26 см - размеры Метагалактики), четвертая же координата имела циклический замкнутый характер с очень малыми размерами. Все эти соображения привели к тому, что многомерными теориями занимались очень немногие физики. Исключительно эффективная реставрация идеи многомерного физического пространства произошла через тридцать лет после описываемых событий, в середине 70-х годов. Можно назвать несколько важных причин этой реставрации. Во-первых, значительные успехи в теории объединения взаимодействий. Правда, в основе этих успехов лежали идеи, существенно отличные от идей Калуцы - Эйнштейна. Объединение основывалось на квантовой теории поля. Во-вторых, появилась теория, претендующая на объяснение сильного взаимодействия. Эта теория базировалась на идее существования кварков (квантовая хромодинамика; см. разд.6 гл.2). В-третьих, в рамках теорий, объединяющих три или все четыре взаимодействия, появились очень малые масштабы. Первый масштаб (большое объединение трех взаимодействий) равен 10**-28 - 10**-29 см. Второй масштаб возник в рамках супергравитации (объединение всех четырех взаимодействий). Этот масштаб, так называемая планковская длина`, HP G 1/2 -33 l| ~ (------) = 10 см. (54) p c**3 Эти расстояния - следствие огромных масштабов масс объединения (см. таблицу в разд.6). -----------------------------------------------------------` Планковские величины были впервые предложены М.Планком в докладе на заседании немецкой Академии наук в 1899 г. Подробно история возникновения планковской системы единиц была изложена в ст.: Горелик Г.Е. Первые шаги квантовой гравитации и планковские величины // Эйнштейновский сборник, 1978-1979. М.: Наука, 1983, С.334. ----------------------------------------------------------- И наконец, последнее: появилось некоторое понимание природы размерности макроскопического пространства (N=3). Коротко (подробнее см. гл.3) можно сказать, что значение N=3 - результат некоторых случайных процессов, природа которых до конца не установлена. Однако можно допустит ь, что "истинная" размерность пространства в различных областях Вселенной не одинакова, поэтому "странная" геометрия Калуцы оказывается в определенном смысле естественной. До сих пор мы почти одновременно говорили о совместной геометрической интерпретации электромагнитного и гравитационного взаимодействий и существовании других (слабого и сильного) взаимодействий, которые как будто не укладываются в схему Калуцы. Ранее указывалось, что решение этой проблемы появилось в результате создания теории взаимодействия кварков (квантовая хромодинамика) и успехов в объединении электромагнитного и слабого взаимодействий (теория Глешоу Вайнберга - Салама). Наша формулировка неточна. На самом деле квантовая хромодинамика не вошла в арсенал достижений физики как теория, интерпретирующая взаимодействие кварков. Оказалось, что уравнения Янга - миллса хорошо хорошо описывают взаимодействие кварков в определенных границах, которые по существу являются пределами применимости квантовой хромодинамики. Частица со свойствами, весьма близкими к частице Янга - Миллса, получила название глюона и оказалась переносчиком сильного взаимодействия между кварками (см. Дополнение). В основе теории Янга - Миллса лежат калибровочные соотношения i g T(x) 1 DL a PSIG' = PSIG e



A' -> A + [aA] - --- ------, (55) g DL x g=const, a=a(x). Соотношения (55) определяют уравнения Янга - Миллса и очень похожи на условия (48), (49) калибровочной инвариантности в электродинамике. Однако есть и два существенных отличия: 1) в уравнениях (55) T(x) не число, а квадратная матрица и 2) в условие преобразования вектор-потенциала A входит дополнительный член [a,A] (наличие такого члена приводит к тому, что вектор A не только инвариантен относительно смещения, но и относительно вращения в изотопическом пространстве). Эти две, казалось бы, несущественные особенности радикально отличают уравнения Янга - Миллса от уравнений электродинамики. Отметим в них то, что нам потребуется в дальнейшем. Во-первых, свойства матриц T существенно отличаются от свойств алгебраических чисел ALPHA. Числа характеризуются свойствами коммутативности (ALPHA|ALPHA| - ALPHA|ALPHA| = 1 2 2 1 0). Матрицы этим свойством не обладают (вообще говоря, T|T| - T|T| /= 0). 1 2 2 1 Инвариантность (55) функции PSIG требует введения уже 1 не одномерного пространства S|, а многомерного. Например, если матрица T двумерна, то соответствующее ей пространства 3 - трехмерная сфера S|. Соотношение между размерностями матрицы (n) и соответствующего ей пространства (N) определяется квантовомеханическим условием унитарности: N=n**2-1 (n>=2). Для понимания дальнейшего целесообразно вначале ограничиться геометрической интерпретацией электрослабого взаимодействия. Известно, что слабое взаимодействие характеризуется +- 0 тремя частицами-переносчиками - тяжелыми W||- и Z|-бозонами, образующими изотопический триплет. Изотопический триплет соответствует трем независимым направлениями вектора состояния в изотопическом пространстве. Поэтому для своего геометрического описания этот триплет требует трехмерную 3 сферу S|. Электромагнитное взаимодействие (изотопический спин фотона 1 равен нулю) описывается сферой S|. Поэтому может показаться, что для совместного описания электрослабого 3 взаимодействия могут потребоваться и сфера S| и сфера 1 3 1 (окружность) S| (прямое произведение S| x S|). Однако ясно, 3 1 что сфера S| уже включает окружность S| - она состоит из бесконечной совокупности окружностей. Поэтому может опять возникнуть неверное впечатление, что для описания 3 электрослабого взаимодействия достаточно одной сферы S|, уже 1 включающей окружность S|. В действительности такая процедура слишком упрощена. Выше отмечалось, что окружность 1 (сфера S|) обладает среди сфер уникальной особенностью: лишь 1 в пределах сферы S| два последовательных вращения коммутативны, что отражается в разнице правил коммутации двух чисел и двух матриц. Суммарное вращение в пределах окружности не зависит от порядка, в котором вращается вектор состояния. Окончательный результат не зависит от того, в каком порядке пробегает вектор состояния два угла (ALPHA|, 1 ALPHA|) вдоль окружности. Суммарный угол в любом случае 2 равен ALPHA| + ALPHA| = ALPHA| + ALPHA|. 1 2 2 1 Совершенно иная ситуация возникает при вращении в N сферах S| (N>=2) высших размерностей. В этом случае суммарное вращение зависит от порядка, что символически можно записать в форме ALPHA| + ALPHA| = ALPHA| + ALPHA|. 1 2 2 1 Подобное различие в свойствах коммутативности обуславливает кардинальную разницу между уравнениями электродинамики и 1 уравнениями Янга - Миллса. Поэтому включение окружности S| в 3 сферу S| неправомочно. Однако вполне оправдана несколько иная операция: 1 выделения некоторой окружности S| и использования ее в 3 дальнейшем для построения сферы S|. Иначе говоря, разбиения 3 1 2 сферы S| на две: S| и S|. В стандартных обозначениях такое 3 1 2 разбиение имеет вид S| = S| + S|. Это произведение двух сфер и есть геометрическая интерпретация электрослабого взаимодействия. Наглядно ее можно попытаться представить как пространство Минковского (Римана), в каждой точке которого в определенном взаимоотношении "прикреплены" окружности и сферы одинакового радиуса. По аналогии с геометрической интерпретацией электрослабого взаимодействия можно геометрически интерпретировать объединение сильного, слабого и электромагнитного взаимодействия (большое объединение). Квантовая хромодинамика определяется группой SU(3), соответствующей 3-мерному комплексному пространству (матрица T 3-мерна). Учитывая квантовое условие унитарности (см. выше), размерность соответствующего пространства равна восьми. Эту размерность можно уменьшить до семи, используя свойства проективных пространств, когда одна из размерностей стягивается в точку. В проективной геометрии все точки, координаты которых пропорциональны (отличаются одним и тем же числовым множителем), принимаются за одну точку. Иначе говоря, все точки с координатами bx|, bx|,..., bx| (b 1 2 N действительное число, принимающее различные значения) рассматриваются как одна. Это означает, что в рамках проективной геометрии прямая эквивалентна точке, что является отражением принципа двойственности. Поэтому проективное пространство с размерностью N в известном смысле эквивалентно обычному пространству с размерностью N+1, а 2 2 1 1 произведение пространств CP| x S| x S| (CP| - проективное двумерное комплексное пространство, эквивалентное 4-мерному действительному пространству) эквивалентно изотопическим пространствам, отражающим все три взаимодействия: сильное 1 (SU(3)), слабое (SU(2)) и электромагнитное (S|). Итак, изотопическое пространство большого объединения интерпретируется 7-мерным компактным ограниченным по объему 2 2 1 пространством CP| x S| x S|. Здесь возникает естественный 2 2 1 вопрос, является ли компактный слой CP| x S| x S| единственным геометрическим отображением всех взаимодействий, кроме гравитационного. На этот вопрос следует отрицательный ответ, имеющий два аспекта: геометрический и физический. Геометрический сводится к тому, что представление трех 2 2 1 взаимодействий в виде произведения CP| x S| x S| неоднозначно. Их можно представить, например, в виде произведения двух сфер разной размерности, но так, чтобы суммарная размерность была бы больше шести. Динамическая неоднозначность определяется опытом. Нет доказательств отсутствия сверхслабых (незарегистрированных до сих пор) взаимодействий, которые могут усложнить структуру слоев. Таким образом, объединение всех четырех взаимодействий можно интерпретировать как расслоенное пространство с базой - 4-мерным пространством Римана и 7-мерным слоем чрезвычайно малых размеров. Эти размеры определяются по порядку величины из соображений размерности (величина, имеющая размерность длины и образованная из универсальных фундаментальных постоянных G, h и c) и значения константы объединенного взаимодействия. Оба подхода приводят к значению радиуса r| c компактных компактных размерностей, равного планковским размерам (см.(54)). Разумеется, значение r| ~ l| ~ 10**-33 c p см - это лишь порядок величины и причем весьма грубый, компактных слоев. Нельзя, например, исключить, что r| ~ l|/ALPHA| ~ 10**-31 см. c p e Возникает вопрос, можно ли (хотя бы в принципе оценить на опыте значение величины r|. Пока просматривается лишь c единственный подход - обнаружение распада протона. Если это явление будет обнаружено, то можно утверждать, что приведенная геометрическая интерпретация верна при r| ~< 10**-30 см. В противном случае (r| >> 10**-30 см) c c теоретические оценки времени жизни протона становятся неправомочными. Непосредственное же измерение величины r| c (например, на ускорителях), кажется нереалистичным. Сейчас исследовалась динамика вплоть до расстояний ~10**-16 см. Увеличить эти оценки на два-три порядка очень сложно, хотя принципиально и возможно. Путей же к исследованию на ускорителях свойств пространства на расстояниях << 10**-20 см сейчас не видно. В этой связи возникает вопрос, полезен ли акцент на исследование "истинной" физической геометрии. Это важнейший вопрос. И краткий ответ на него таков. Да, нужно. Нужно потому, что, хотя в нашем распоряжении и нет прямых методов изучения компактных размерностей, существует много косвенных доводов в пользу того, что наблюдаемое физическое пространство (и в первую очередь его размерность) не есть "истинное" пространство Вселенной. Анализу этих аргументов посвящается гл.3 книги. Следовательно, есть серьезное основание полагать, что многомерное расслоенное пространство с компактными размерностями есть физическая реальность. 10. ПЛАНКОВСКАЯ ФИЗИКА. ЯВЛЯЕТСЯ ЛИ ТОЧКА ОСНОВНЫМ ЭЛЕМЕНТОМ ФИЗИЧЕСКОЙ ГЕОМЕТРИИ? Сейчас, по всеобщему убеждению специалистов, при планковских параметрах l~l|, t~t|, M~M| формируется p p p "истинная" физика в том смысле, что понимание происходящих процессов в этой области приведет к построению единой теории поля, квантовой теории гравитации, созданию теории происхождения Метагалактики (а может быть, и Вселенной) и количественному представлению физической геометрии. Меньше внимания (и, по мнению автора, незаслуженно) уделяется перспективам понимания природы фундаментальных физических констант. Возникает видимое противоречие между нашими стремлениями завершить стройную конструкцию физики и наблюдательными возможностями, весьма скромными сравнительно с планковскими параметрами. До сих пор физический эксперимент и теория дополняли друг друга. Однако идея об определяющем значении планковских параметров (которую мы назовем планковской физикой) обрекает нас, по крайней мере в настоящее время, на разрыв с этим принципом, на котором базировалась физика как эмпирическая наука. Сейчас можно наметить лишь некоторые косвенные эмпирические подходы к планковским параметрам. Прежде всего следует отметить гипотетический распад протона. Если нам повезет и распад будет обнаружен, то мы приоткроем окно в мир энергий ~10**15 ГэВ и расстояний ~10**-29 см, что "всего" на три-четыре порядка отличается от планковских параметров. Если нам повезет вдвойне и окажется, что на характеристики распада протона влияет гравитация, то это может послужить эмпирическим базисом для изучения планковской физики. Второй подход связан с уникальностью значений фундаментальных постоянных, в том числе и размерности пространства. Если вся физика формируется при планковских параметрах, то и хорошо изученные на опыте фундаментальные постоянные также должны быть связаны с этими параметрами. Многие теоретики возлагают большие надежды на третий подход к "экспериментальному" исследованию фундаментальной физики при планковских параметрах. Крайне вероятно, что Метагалактика в процессе своей эволюции прошла через область, принадлежащую компетенции планковской физики. Изучение реликтовых следов этого процесса должно способствовать проверке планковской физики. Частично этот подход рассматривается в гл.3 нашей книги. К сожалению, все отмеченные подходы к проверке планковской физики имеют более или менее косвенный характер. Самая прямолинейная проверка - эмпирическое воспроизведение акта рождения Метагалактики - выше человеческих возможностей. Однако на путях создания объединенной теории поля и подступах к планковской физике возник в некотором смысле не физический, а математический подход. Его нельзя назвать совершенно новым, поскольку в иной модификации он появился вместе с рождением квантовой теории поля много десятилетий тому назад. Кратко его можно сформулировать в одной фразе: "Правильная теория не должна содержать бесконечностей". Этот тезис появился на заре создания квантовой электродинамики. Частично решение проблемы устранения бесконечностей было найдено в конце сороковых годов Р.Фейнманом, Ю.Швингером и С.Томонагой (так называемый метод перенормировок). Однако предложенный метод не устранял полностью все бесконечности, да и сами логические его основы оставляли желать лучшего. По меткому замечанию одного из создателей новой электродинамики - Р.Фейнмана, метод перенормировок - это способ "убирания мусора под ковер". За истекшие десятилетия продвижение в устранении бесконечностей в рамках квантовой электродинамики как изолированной теории было сравнительно невелико. Однако известный прогресс наметился в процессе создания единой теории взаимодействий, когда суммирование бесконечностей от разных взаимодействий привело к конечным результатам. Этот факт вселил надежду, что объединенная теория не должна содержать бесконечностей. конечность всех результатов - критерий истинности объединенной теории. Математическая форма этого критерия, с одной стороны, и относительно малый эмпирический фундамент планковской физики - с другой, стимулировали огромный поток работ, содержащих новые гипотезы и развитие новых методов математической физики. Выживаемость этих подходов может проверить только время. Здесь мы упомянем лишь некоторые из них, руководствуясь в первую очередь их доступностью и популярностью. Дж.Уилер полагал, что на малых расстояниях должна существенно усложниться геометрия (топология) физического пространства. В общем виде такая гипотеза кажется весьма правдоподобной, однако конкретное ее воплощение, предложенное Уилером, по-видимому, неверно, поскольку оно не учитывает квантовых свойств элементарных частиц (в частности, их спинов) и разнообразие типов взаимодействий. М.А.Марков предложил модифицировать уравнения ОТО таким образом, чтобы при M << M| модифицированные уравнения и p уравнения ОТО совпадали, а при M>~ M| гравитационное p взаимодействие исчезало и взаимодействие в уравнениях ОТО описывалось бы исключительно LAM-членом, что соответствует вакуумному состоянию (см. разд.5 гл.3). Б. де Витт и С.Хокинг предлагают сложную процедуру квантования с учетом различных возможных топологий в планковской области. Но, пожалуй, наиболее популярной в настоящее время является гипотеза о том, что элементарным физико-геометрическим объектом является не точка, а струна. Реально сейчас говорят о так называемых суперструнах, однако, чтобы чрезмерно не усложнять изложение введением новых и весьма непривычных понятий, мы будем использовать образ обычной струны. Одной из главных причин, вызвавших появление этого образа, является известный экспериментальный факт - ненаблюдаемость кварков. В соответствии с кварковой гипотезой адроны состоят из кварков (см. Дополнение), которые обречены на пленение в пределах адронов. Рассмотрим для простоты бозон-систему, состоящую из двух кварков. Тогда, полагая, что силы, связывающие оба кварка, подобны натяжению струны, нетрудно объяснить невылетание кварков, допуская, что натяжение пропорционально расстоянию между кварками. В этом случае, чтобы раздвинуть кварки на расстояние l, затрачивается энергия, пропорциональная l. Следовательно, чтобы вынудить кварк покинуть адрон (что соответствует расстоянию l, равному бесконечности), нужно затратить бесконечную энергию, что и определяет невылетание кварков. Весьма популярный в настоящее время образ суперструн аналогичен струнам, возникшим при описании сильного взаимодействия, с одним существенным различием. Суперструны - объекты с протяженностью порядка планковской длины, и они соответствуют объединению всех взаимодействий, включая гравитацию. В рамках теории суперструн наметился известный прогресс в устранении бесконечностей в теории поля, были получены характеристики некоторых фундаментальных частиц и т.д. Эти достижения вселяют надежду на то, что элементарным блоком в физической геометрии является точка, а одномерное образование - струна. В струнной геометродинамике существует один замечательный факт. На начальном этапе развития струнной теории умели квантовать лишь в том случае, если струна вложена в пространство с размерностью N=26. Сейчас, после разработки более совершенных методов и перехода к планковским масштабам, эту операцию научились производить при критической размерности N=10. Такое значение почти совпадает с размерностью N=11 пространства Калуца-Клейна (см. разд.7 гл.3), соответствующего геометрической интерпретации объединения всех четырех взаимодействий. Естественен вопрос: не являются ли струнная геометродинамика и геометрическая интерпретация объединенного взаимодействия a la Калуца-Клейна разными проявлениями одной и той же субстанции? Струна, свернутая в замкнутую окружность, образует сферу S|. Из множества таких окружностей можно получить 1 сферу любой размерности или другие геометрические фигуры. Возможность объединения обоих направлений (струнной геометрии и геометрии Калуца-Клейна) является весьма соблазнительной. И хотя оба направления развиваются почти параллельно, кажется, что их слияние будет весьма серьезным шагом на пути решения проблемы планковской физики. Сейчас предпринимаются первые попытки в этом направлении. ГЛАВА 3. В С Е Л Е Н Н А Я 1. КРАТКАЯ ИСТОРИЯ СОВРЕМЕННОЙ КОСМОЛОГИИ История современной космологии уникальна. Вероятно, в истории точных наук не было ни одной темы, которая на протяжении сравнительно короткого срока (70 лет) подверглась бы столь многочисленным кардинальным переоценкам. Едва ли подобная ситуация - следствие случайных заблуждений и прозрений. На наш взгляд, существовали глубокие причины зигзагов в науке о мироздании. Кратко можно назвать три такие причины. 1. Вера в неизменность Вселенной, господствовавшая в течение многих столетий. 2. Вдохновляющая грандиозность предмета космологии. 3. Скудость наблюдательных данных о мире как целом, обуславливающая отсутствие значительных барьеров для беспочвенных фантазий. Можно точно назвать год рождения современной космологии. В 1917 г. А.Эйнштейн пытался применить созданную им общую теорию относительности (ОТО) к физической интерпретации структуры мира. Однако в отличие от всех остальных своих работ в данном случае Эйнштейн не прислушался к голосу своей поразительной, не признающей никаких авторитетов интуиции, а исходил из многовековой догмы о неизменности Вселенной. Поэтому он модифицировал уравнения ОТО, введя LAM-член. Из этих модифицированных уравнений следовала статичность Вселенной, что вполне соответствовало существовавшим в то время установившимся догмам. Заметим, что введение LAM-члена эквивалентно постулированию новых, постоянных в пространстве сил, компенсирующих влияние гравитации. Взаимовлияние сил гравитации и космологических сил, обусловленных LAM-членом, компенсировало друг друга, что и обеспечивало статичность Вселенной. Но вскоре после публикации работ Эйнштейна, посвященных ОТО и космологии, произошел крутой поворот космологии. В начале 20-х годов в труднейших условиях послереволюционного Петрограда горстка энтузиастов, по существу дилетантов в современной им физике, начала изучать ОТО. В эту группу входил и А.А.Фридман - математик и метеоролог. А.А.Фридман (столетие со дня рождения будет отмечаться в 1988 г.) решал уравнения ОТО без LAM-члена и получил удивительный по тем временам результат: Вселенная должна быть нестационарной. Она должна изменять свои размеры со временем. Необходимо подчеркнуть два аспекта в работе Фридмана. Первый - математический: решение уравнений ОТО, вошедшее теперь во многие учебники по космологии. Второй принципиальный: Фридман в полном противоречии с установившейся традицией положил начало идее нестационарности Вселенной. Нам представляется, что, несмотря на исключительное изящество решения, полученного Фридманом, именно второй аспект (констатация возможности нестационарной Вселенной) имеет непреходящее значение. Математическое решение могли получить другие математики, в частности, выдающиеся математики Д.Гильберт и Г.Вейль, сделавшие очень много для создания ОТО несомненно могли бы получить эти решения. Однако не им, а Фридману выпала честь сказать первое слово о нестационарности Вселенной. Признание к работам Фридмана пришло не сразу. Вскоре после их публикации Эйнштейн высказал сомнение в правильности решения Фридмана. Однако через очень короткое время великий физик, человек исключительной принципиальности, написал статью, опровергавшую эти сомнения и признающую правильность выводов Фридмана. Однако на данном этапе дискуссия велась пока на чисто теоретическом уровне и имела, так сказать, академический интерес. Никаких наблюдательных данных, подтверждающих нестационарность Вселенной, не было. Кардинальный сдвиг в этом пункте наметился в 1929 г., когда американский астроном Э.Хаббл обнаружил красное смещение в спектрах всех наблюденных им галактик. Именно то обстоятельство, что все спектры были смещены в одну и ту же сторону (покраснение) свидетельствовало, что все галактики уходят, разбегаются от нашей Солнечной системы. А это и было доказательством нестационарности Вселенной. Наступила, правда кратковременная, эра торжества модели Фридмана, которому, однако, не пришлось быть ее свидетелем. А.А.Фридман скончался в 1926 г.








Date: 2015-07-01; view: 291; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию