Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Э Л Розенталь 4 page





2. КЛАССИЧЕСКАЯ ДИНАМИКА И ЕЕ ГЕОМЕТРИЯ

Предмет классической динамики (ньютоновской механики) определение изменения состояния (положение, скорость и т.д.) тел во времени. Абстрагируясь от влияния смежных физических дисциплин, можно сказать, что ньютоновская динамика занимается определением движения материальных точек при заданном положении внешних тел.

Решение основной проблемы классической механики предполагает априорное определение физического пространства, в котором движутся материальные точки. В рамках ньютоновской физики оно отождествляется с пространством Евклида.

Одна из задач механики - вычисление траектории тела (материальной точки) в этом пространстве.

Траектория описывается математической кривой, однако не тождественна ей. Математическая кривая - образ, существующий безотносительно к другим объектам или системам координат. Этот образ возник задолго до создания аналитической геометрии. Иное дело - физическая траектория. Это понятие имеет лишь относительный смысл: траектория материальной точки определяется относительно другого тела, обычно называемого телом отсчета.

Абсолютного движения не существует. По этой причине физики предпочитают говорить не о системе координат, а о системе отсчета, подразумевая, что это понятие включает также и тело отсчета. Если оно может быть отождествлено с материальной точкой, то его обычно принимают за начало координат. Подчеркнем, что здесь мы встречаемся не с терминологическими уточнениями. В отличие от начала координат тело отсчета, как правило, влияет, а иногда и определяет состояния исследуемого тела (материальной точки).

В классической динамике пространство определяет взаиморасположение тел в данный момент времени в их противопоставлении к пустоте (в классическом смысле). Несколько перефразируя определение времени, данное в предыдущем разделе, можно сказать, что пространство есть мера неупорядоченной эволюции относительно состояния тела. Это определение, так же как и предшествующее, нуждается в некоторых комментариях.

Пространственные соотношения характеризуют относительное положение материальных тел, включая и тело отсчета. Временные же соотношения также включают точку отсчета, но эта точка относится к тому же самому телу, время эволюции которого определяется.

Но кардинальным физическим отличием пространства от времени является факт, что первое не содержит аналога принципа причинности. Расстояния между двумя произвольными точками A и B пространства (взятые безотносительно ко времени) эквивалентны: AB=BA. Временные же интервалы t|t| и

1 2 t|t| (t| > t|) существенно неэквивалентны. Время t| 2 1 2 1 2 будущее относительно времени t. Иллюстрацией этих положений является система двух событий (At|, Bt|), причинно-связанных

1 2 между собой. Событие At| влияет на событие Bt|, обратное

1 2 влияние отсутствует. Однако тела, расположенные в точках A и B, симметричны. Их пространственная характеристика - вектор -> -> AB эквивалентен вектору BA.

В основе ньютоновской механики находится понятие инерциальных систем отсчета, играющее особую роль, поскольку, строго говоря, законы Ньютона относятся именно к этому классу систем отсчета. К сожалению, как это часто бывает с основополагающими понятиями, определения инерциальной системы многообразны и не полностью отражают ее свойства, что может привести, а иногда и приводит к недоразумениям.

Однако полный анализ понятия инерциальной системы отсчета выходит за рамки основной темы, и далее мы ограничимся лишь кратким его рассмотрением. Пока же примем наиболее популярное определение инерциальной системы отсчета, представленное в классическом курсе теоретической физики Л.Д.Ландау и Е.М.Лифшица: "...можно найти такую система отсчета, по отношению к которой пространство является однородным и изотропным, а время однородным. Такая система называется инерциальной".`

-----------------------------------------------------------` Ландау Л.Д., Лифшиц Е.М. Курс теоретической физики. М., Наука, 1973. Т.1. Механика. С.14. -----------------------------------------------------------

Из этого определения следует ограниченность понятия инерциальной система отсчета. Оно приложимо к (квази)точечным телам - материальным точкам. Макроскопическое тело, состоящее, по определению, из многих точечных тел, само выделяет из первичного пространства Евклида объем, нарушающий его однородность и изотропию. Следовательно, использование понятия инерциальной системы применительно к макроскопическим телам, вообще говоря, неоправданно. И действительно, существует ряд парадоксальных физических ситуаций (релятивистское преобразование температуры, выбор формы электромагнитного тензора энергии-импульса в макроскопических телах и т.д.), когда отсутствует однозначное решение четко и корректно сформулированной проблемы. На наш взгляд, эта неоднозначность обусловлена чрезмерно широким употреблением понятия инерциальной системы. Но подробнее обсуждение этой проблемы находится вне основной линии книги. Мы лишь во избежание недоразумений будем использовать инерциальные системы для (квази)точечных тел.


Здесь уместно напомнить основные свойства инерциальных систем отсчета. В этих системах законы ньютона имеют наиболее простой вид (отсутствуют силы инерции). Все механические явления, происходящие в двух инерциальных системах, движущихся с постоянной скоростью друг относительно друга, протекают одинаково.

Иначе говоря, законы движения в двух инерциальных системах координат инвариантны при переходе от одной системы отсчета к другой. Отмеченную инвариантность уместно выразить на языке линейных преобразований. Для простоты ограничимся двумерным евклидовым пространством. Пусть в инерциальной системе I точка (событие) представлена координатами x|, y|,

1 1 а система II (координаты x|, y|) движется с постоянной

2 2 скоростью v относительно системы I. Тогда из свойств евклидова пространства и инерциальных систем отсчета следует, что уравнения движения в этих системах должны быть инвариантны относительно замены:

x| = x| cos ALPHA + y| sin ALPHA + vt cos BETA + a, 2 1 1

y|= -x| sin ALPHA + y| cos ALPHA + vt sin BETA + b, (12) 2 1 1

где ALPHA - произвольный угол поворота системы отсчета I, BETA - угол между направлениями O|O| и O|x|. Постоянные a и

1 2 2 2 b отражают однородность (трансляционную инвариантность) евклидова пространства. Условие (12) является обобщением аналитического определения статического евклидова пространства. Евклидово пространство однородно и изотропно. Следовательно, при произвольном преобразовании декартовой системы координат осуществляются соотношения:

x| = x| cos ALPHA + y| sin ALPHA + a, 2 1 1

y|= -x| sin ALPHA + y| cos ALPHA + b, (13) 2 1 1

Таким образом, инерциальные системы отсчета - основа динамики - являются обобщением статического евклидова пространства. Это обобщение отражается включением членов, содержащих множитель vt, обуславливающих равноправие всех инерциальных систем отсчета.`

-----------------------------------------------------------` Более подробно о взаимосвязи между ньютоновской динамикой и евклидовым пространством см. в кн.: Яглом И.М. Принцип относительности Галилея и неевклидова геометрия. М.: Наука. 1969. -----------------------------------------------------------

Пожалуй, интересно отметить, что в течение многих столетий доминировала механика, в которой допустимые преобразования представлялись соотношениями (13). Эта механика была унаследована от Аристотеля, который полагал, что любое движение (в том числе и равномерное) обусловлено внешним воздействием. Потому в рамках такой механики существовала единственная привилегированная система отсчета - та, к которой тело покоилось. Естественно, что геометрия, соответствующая подобной механике, была тождественна геометрии Евклида.


Преобразование (12) подчеркивает особенность классической механики. Время t и скорость v никак не связаны с пространственными координатами и могут принимать любые значения. Поэтому, хотя пространство, представленное геометрией Евклида, имеет определенную метрику (в данном случае x**2 + y**2 = const), совокупность времени и пространственных координат такой определенной метрикой не обладает.

3. "ВЫВОД" КЛАССИЧЕСКОЙ ДИНАМИКИ

ИЗ СВОЙСТВ ПРОСТРАНСТВА

Почти во всех учебниках физики характеристики пространства и уравнения движения излагаются независимо. Поэтому создается впечатление, переходящее в убеждение, о независимости этих основных элементов физики. В действительности же свойства пространства (евклидовость) практически предопределяют классическую динамику.

Ограничимся (как условились ранее) анализом системы двух тел, одно из которых будем полагать телом отсчета, а другое материальной точкой, положение которой характеризуется вектором r и временем t. Из определения инерциальной системы отсчета следует, что они являются единственной привилегированной системой отсчета, поскольку она отражает наиболее общие свойства пространства изотропию и однородность. Для системы двух тел существует единственное выделенное направление - вектор r, соединяющий тело отсчета и материальную точку.` Поэтому все динамические и кинематические величины будут направлены вдоль вектора r. Обозначим меру воздействия на материальную точку символом Ф. По определению, воздействие, а следовательно и сила, инвариантно относительно равномерного движения инерциальной системы. Поскольку существует единственное выделенное направление r, то функция Ф определяется вектором r или его производными dr/dt, d**2 r/dt**2, d**3 r/dt**3... (предполагается, что они параллельны). Действие в принципе может зависеть от констант m|, m|,..., характеризующих

1 2 материальную точку

dr d**2 r Ф = Ф (m|, m|,..., r, ----, --------,...). (14)

1 2 dt dt**2

Однако при учете свойств инерциальной системы это выражение сильно упрощается. Действительно, в общем случае аргументы r и v = dr/dt исключаются вследствие эквивалентности инерциальных систем. Всегда можно выбрать систему, в которой в данный момент v=0. Производные высших порядков: d**3 r/dt**3, d**4 r/dt**4,... в общем виде также не могут определять движение, поскольку в этом случае, помимо выделенного класса систем отсчета (соответствующего v=const), существовали бы и другие привилегированные системы отсчета, удовлетворяющие условиям a = d**2 r/dt**2=const или b = d**3 r/dt**3=const и т.д. Поскольку рассматривается материальная точка, то естественно допустить, что она характеризуется единым параметром m=m|. Поэтому (14) можно

1 записать в форме

d**2 r Ф = Ф (m, --------). (15)


dt**2

Величина m - внутренняя характеристика тела, вторая производная d**2 r/dt**2 определяется взаиморасположением тела отсчета и материальной точки. В рамках ньютоновской механики обе величины абсолютно независимы. Поэтому естественно предположить, что они входят в выражение (14) в виде произведения

d**2 r Ф = Ф (m --------). (16)

dt**2

Назовем силой функцию F, обратную функции Ф, тогда получаем основной закон

d**2 r F = m --------. (17)

dt**2

-----------------------------------------------------------` Строго говоря, здесь пренебрегается возможным вращением системы. Обобщение рассуждений, учитывающих вращение, не представляет трудностей. -----------------------------------------------------------

Из свойств пространства вытекают характеристики дальнодействующих сил, составляющих основу классической механики.

Назовем дальнодействующими (макроскопическими) силами такие воздействия, которые в статическом случае (т.е. когда тело отсчета неподвижно) можно характеризовать силовыми линиями, начинающимися в теле отсчета, но не изменяющимися в пустом пространстве. Иными словами, в пустом пространстве силовые линии - прямые. Если же силовые пересекают материальную точку, то они взаимодействуют с ней, прекращая свое существование.

Заметим, что "прямолинейность" силовых линий нетривиальное допущение, которое характерно исключительно для дальнодействующих сил. Для микроскопических взаимодействий силовые линии либо запутываются, взаимодействую друг с другом, утрачивая прямолинейность (сильное взаимодействие), либо обрываются (слабое взаимодействие). На современном языке необходимыми и достаточными условиями дальнодействия сил являются неравенства

ALPHA << 1, m| = 0,

c

где ALPHA - безразмерная константа взаимодействия, m|

c массам обменной частицы (см. Дополнение). Далее в этом разделе ограничимся исключительно дальнодействующими макроскопическими силами.

Поскольку силовое воздействие является точечным и осуществляется в месте расположения материальной точки, то единственная характеристика сил, обусловленная этим расположением, есть плотность d силовых линий. Поэтому сила, действующая на материальную точку, пропорциональна плотности силовых линий: F~d. Но в силу изотропии и однородности пространства полное число силовых линий неизменно, а плотность силовых линий неизменно, а плотность силовых линий макроскопического взаимодействия обратно пропорциональна площади сферы с центром, расположенным в начале координат (теле отсчета). Эта сфера проходит через материальную точку. поскольку площадь сферы в трехмерном евклидовом пространстве пропорциональна r**2 (r - расстояние между телом отсчета и материальной точкой), то

F~1/r**2. (19)

Мы получили выражение для макроскопических сил: силы Кулона и силы Ньютона.

Таким образом, оба закона - следствие особых свойств трехмерного евклидова пространства.

Следовательно, как механика Ньютона, так и выражение для статических (классических) сил зависят от свойств пространства. Подчеркнем, что, несмотря на демонстрацию тесной связи основ динамики и свойств пространства, нельзя полностью свести физику к логическим умозаключениям, основанным не геометрии. Разумеется, лишь опыт может позволить заключить о макроскопичности данного типа сил. Можно (как это происходило в действительности) на опыте измерить зависимость (19), на более современном уровне установить соотношения (18), которые также являются следствием экспериментов.

Однако общие соотношения отражают свойства пространства, и наша цель - демонстрация тесной связи этих свойств и простейшей динамики.

4. ПРОСТРАНСТВО

СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

(ПРОСТРАНСТВО МИНКОВСКОГО)

Теории относительности посвящено огромное число книг, написанных на разных уровнях. Поэтому нецелесообразно представлять здесь систематическое изложение этой теории. Идея этого и следующего разделов несколько скромнее: очертить лаконично идею взаимосвязи геометрии и динамики, обусловленную созданием теории относительности, которая изменила сам стиль этой взаимосвязи. Ранее (в ньютоновской механике) эта взаимосвязь проявлялась как бы неявно: в определении инерциальной системы, мельком упоминалась при выводу законов сохранения и т.д. После утверждения теории относительности единство геометрии и динамики стало краеугольным камнем физики.

Специальная теория относительности базируется на двух постулатах.

1. Существует класс эквивалентных инерциальных систем отсчета. (Этот постулат оправдывается свойствами пространства: изотропией и однородностью.)

2. Скорость света в пустоте постоянна и не зависит от движения его источника или приемника.

К этому постулату, выдвинутому А.Эйнштейном в 1905 г., мы привыкли. А привычка часто является синонимом тривиальности. В действительности он связан с двумя нетривиальными допущениями. Во-первых, скорость света c не подчиняется обычному классическому правилу сложения скоростей: v| = v| + v| (v| - суммарная скорость, v|

3 2 1 3 1 скорость источника, v| - скорость испущенной материи, в

2 данном случае скорость света). И, во-вторых, этот постулат также связан с утверждением об евклидовости пространства. Отсутствие однородности или неизотропия пространства также привели бы к его нарушению. Физической иллюстрацией возможности подобного нарушения евклидовости является существование макроскопических тел и сильных (>=10**13 Гс) электромагнитных полей. В областях, где находятся эти объекты, скорость света отличны от c. Поэтому при формулировании второго постулата особо подчеркивается свойство среды, в которой распространяется свет (пустота). Верные традиции этой книги, мы остановимся на простейшей системе, состоящей из тела отсчета и материальной точки (пробного тела).

В математическом плане второй постулат специальной теории заключается в том, что время распространения света t между началом координат O и точкой (x, y, z) определяется уравнением

(ct)**2 - x**2 - y**2 - z**2 = 0 (20)

или в дифференциальной форме

(cdt)**2 - dx**2 - dy**2 - dz**2 = 0 (21)

Соотношения (20) и (21) кардинально отличаются от связи между пространством и временем в классической физике (см. (12)). В последнем соотношении пространственные и временные координаты выступают как независимые переменные. Равенства (20) и (21) жестко связывают пространство и время. Пространство и время образуют единый физико-математический континуум. Иногда (особенно в период ранних дискуссий о теории относительности) наиболее ревностные ее апологеты утверждали, что Эйнштейн и Минковский полностью уравняли пространство и время. Это утверждение неверно. В соотношениях (20) и (21) временная и пространственные координаты выступают с разными знаками, что отражает их фундаментальное различие: время (в отличие от пространства) - направленный вектор: существует принцип причинности, различающий будущее и прошлое.

В соответствии с обозначениями дифференциальной геометрии выражение (21) записывается в форме

ds**2 = (cdt)**2 - dx**2 - dy**2 - dz**2 = 0 (22)

Второй постулат теории относительности можно сформулировать на геометрическом языке как утверждение, что для света (в пустоте) интервал ds**2 инвариантен относительно вращений и трансляций в 4-мерном континууме пространства-времени.

Инвариантность интервала ds**2 нетрудно обобщить и на случай тела и системы отсчета, движущейся со скоростью v/=c. Из опыта известно, что скорость света в пустоте максимальна. Поэтому это неравенство следует уточнить так: v

Рассмотрим две инерциальные системы координат, движущиеся со скоростью v друг относительно друга. Из (22) следует, что если в одной системе координат ds=0, то и в другой ds'=0. Рассмотрим общий случай: v=<c. Поскольку ds и ds' бесконечно малые одинакового порядка и при v -> c выполняется (22), то и в общем случае ds и ds' могут отличаться лишь постоянным множителем. Из изотропии и однородности пространства следует, что этот множитель равен 1`. Следовательно, интервал

ds**2 = (cdt)**2 - dx**2 - dy**2 - dz**2 = const (23)

относительно вращений и трансляций.

-----------------------------------------------------------` Подробнее доказательство этого утверждения представлено в кн.: Ландау Л.Д., Лифшиц Е.М. Теория поля. 6-е изд. М.: Наука, 1973, С.16. -----------------------------------------------------------

Геометрия, в которой интервал имеет вид (23), называется псевдоевклидовой. Из равенства малых интервалов следует также и инвариантность конечных интервалов.

Инвариантность интервалов ds или s - математической отражение принципиально нового подхода к взаимосвязи пространства и времени. Пространство и время образуют единый математический континуум. Формально это выражается в том, что они составляют пространство Минковского.

Инвариантность интервала ds или s является основой для вывода важнейших следствий теории относительности. чтобы упростить дальнейшие рассуждения, мы ограничимся одной пространственной координатой x. Обобщение на трехмерное пространство (x, y, z) не представляет труда, все сделанные далее выводы при этом сохраняются.

===РИС.4

Отметим прежде всего, что теория относительности существенно изменяет наши повседневные представления о прошлом, будущем и настоящем. Из-за конечности скорости света c причинно-следственные связи определены лишь при значении интервала s>=0. Чтобы представить себе наглядно неопределенно неопределенность ситуации при s<0, допустим, что в момент чтения книги в отдаленной части галактики произошел взрыв звезды, а читатель никак не ощутил этот взрыв и не имеет возможности получить о нем какую-либо информацию. Это типичный пример, отражающий ситуацию при s<0.

Графически можно можно все пространство-время (x,t) разделить на четыре области (рис.4). Пусть две пересекающиеся линии соответствуют уравнениям x = +-ct. Тогда области внутри угла AOB соответствуют будущему; внутри угла COD - прошлому, а углам AOC и BOD - неопределенной ситуации, которая в общем случае зависит от движения системы отсчета. В этом смысле надо понимать сделанное выше замечание относительно тезиса Аристотеля (отсутствие настоящего). Настоящее, соответствующее одновременно происходящим в разных точках пространства событиям, есть понятие относительное. Оно зависит от движения системы отсчета.

Рассмотрим далее преобразование координаты x и времени t при переходе от одной системы отсчета (x,t) к другой (x',t'), движущейся со скоростью v относительно первой.

Условие, определяющее это преобразование, инвариантность интервала s=s'. Это условие определяет преобразование, которое является единственным с точностью до тривиального переноса начала системы отсчета

x' = x ch PSI + ct sh PSI,

(24) ct' = x sh PSI + ct ch PSI,

PSI - аналог угла поворота декартовой системы в евклидовом пространстве (ср. с преобразованием (13)). В формуле (24) ch и ch - гиперболические функции в отличие от обычных тригонометрических функций в соотношении (13). Эта разница определяется тем, что в евклидовом (двумерном) пространстве Inv = x**2 + y**2 - окружность, а в псевдоевклидовом пространстве Inv = t**2 - x**2 - гипербола.

Положим для простоты x=0. Это допущение не уменьшает общности рассуждений, однако сильно упрощает выкладки. Тогда

x' = ct sh PSI, ct' = ct ch PSI. (25)

Учитывая, что x'/t'=v, из (25) следует, что th PSI = v/c. Используя известные соотношения для гиперболических функций, легко получить

sh PSI = (v/c) [1-(v/c)**2]**(-1/2),

(26) ch PSI = [1-(v/c)**2]**(-1/2),

после чего из формул (24) и (26) следуют преобразования Лоренца:

x+vt x' = ------------------,

-------------,

\/ 1-(v/c)**2

(27)

t+vx/c**2 t' = ------------------.

-------------,

\/ 1-(v/c)**2

Из соотношений (27) следует:

1. При v/c<<1 преобразования Лоренца переходят в преобразования Галилея (12).

2. Интервалы длины и времени преобразуются соответственно:

^x ^x' = ------------------,

-------------,

\/ 1-(v/c)**2

(28)

^t ^t' = ------------------.

-------------,

\/ 1-(v/c)**2

Наметим далее вывод из метрических свойств пространства Минковского уравнения движения материальной точки

p=mu, (29)

где u - скорость частицы.

В ньютоновской механике v = dx/dt; m=const (t абсолютное время). Чтобы обобщить импульс в рамках теории относительности, нужно проделать две операции, специфические для теории относительности: 1) условиться о системе отсчета, в которой определяется время; 2) обобщить 3-мерные векторы ньютоновской физики на 4-мерное пространство Минковского. Иначе говоря, следует ввести 4-мерный вектор, который при v/c -> 0 переходил бы в 3-мерный евклидов вектор, а в рамках теории относительности был бы аналогом 4-вектора (t,x,y,z). Найдем 4-мерный аналог скорости v=dx/dt. В русле идей теории относительности существует выделенная (собственная) система отсчета, связанная с материальной точкой. Действительно, в этой системе величина dx=const и время t=TAU однозначно связано с инвариантным интервалом ds. В том же случае, когда тело "истинно" точечное (dx=0), то ds=c d TAU. Поэтому естественно в формуле для скорости положить

u=dx/d TAU (23)

и на основании (23)

v

X,y,z u|| = ------------------, x,y,z -------------, \/ 1-(v/c)**2 где индексы x, y, z отмечают компоненты по соответствующим осям. Чтобы величина u была бы 4-вектором, нужно доопределить четвертую компоненту. В нашем распоряжении есть единственная величина, имеющая размерность скорости: скорость света c. Поэтому аналог временной компоненты 4-скорости: c u| = ------------------. (32) t -------------, \/ 1-(v/c)**2 Тогда выражение (29) для импульса можно записать в форме p| = m|u|, i 0 i ult m| - масса в собственной системе отсчета. Индекс i 0 отмечает номер компоненты 4-скорости. Легко проверить, что величины p| (i=1,2,3,4 или t,x,y,z) образуют 4-вектор. i Действительно, (p|)**2 - (p|)**2 -(p|)**2 -(p|)**2 = (m|c)**2 = Inv. (34) t x y z 0 По существу (34) есть частное следствие общего определения пространства Минковского: квадрат 4-вектора инвариант относительно поворотов и трансляций в этом пространстве. Другим важнейшим примером этого правила является инвариантность интервала. Отличие от векторного определения пространства Евклида сводится к правилу знаков: квадрат временно-подобной компоненты берется со знаком "=", а квадраты пространственно-подобных компонент - со знаком "-". Если потребовать сохранения формы (29) для выражения импульса в релятивистской механике через обычную скорость, то следует изменить определение массы, положив m m = ------------------. (35) -------------, \/ 1-(v/c)**2 Все выводы релятивистской динамики, и в частности формулы (33) - (35), превосходно согласуются с экспериментальными данными, полученными на ускорителях. Точнее, они служат основой для конструирования больших ускорителей, образуя новую область, лежащую на стыке фундаментальной физики и инженерных дисциплин: релятивистскую инженерную физику. 5. ЭЙНШТЕЙНОВСКАЯ ТЕОРИЯ ТЯГОТЕНИЯ Специальная теория относительности, геометрический образ которой воплощен в пространстве Минковского, вызывает невольные ассоциации с величайшими творениями искусства. Сочетание величия человеческого духа и лаконичности придают этой теории те качества, которые отличают настоящие ценности. Тем не менее специальная теория относительности отражение законов природы и поэтому, как и вся физические принципы, характеризуется определенными границами. Произведение искусства - автономно, научная теория неизбежно ограничена невидимыми (а зачастую и зримыми) проявлениями прогресса экспериментальной физики и логикой. И у специальной теории относительности есть границы применимости. Они проявляются довольно отчетлива, однако (и в этом одна из причуд истории науки) их не принято детально обсуждать. В этом нет, вероятно, никакой злонамеренности. подобная ситуация имеет простую психологическую подоплеку. В первые десятилетия после создания теории относительности у нее существовало столько принципиальных и беспринципных противников, что борьба велась не по линии теории ценных деталей, а по вопросу: быть или не быть теории относительности. И когда экспериментальные данные блестяще подтвердили специальную теорию относительности, а ее противники оказались полными банкротами, в общественном мнении возобладала антитеза отрицания - ее полная абсолютизация. Однако беспристрастный анализ продемонстрировал, что и у специальной теории есть свои проблемы, которые частично были блестяще использованы Эйнштейном при создании общей теории относительности, а частично вообще ускользнули из поля зрения научной общественности. Для того, чтобы изложить эти проблемы, мы будем опираться на мысленные эксперименты, которые так часто "проводились" в начале столетия. В частности, на них опирался Эйнштейн в процессе создания теории относительности. Трудно скрыть известную ностальгию по этой почти ушедшей эре, когда в физике царила наглядность, а формальные аспекты были на втором плане. К сожалению, в науке не всегда возможен стиль "ретро", но все-таки будем стремиться к максимальной наглядности. Вообразим систему отсчета, в которой движутся два тела (1 и 2) с разными скоростями. Тогда в области расположения тела 1 в соответствии с формулами (28) о сокращении масштабов пространство будет искажено: его однородность будет нарушена. Следовательно, будет нарушено основное условие определения инерциальной системы отсчета. Фактически многочастичное макроскопическое тело своим объемом нарушает однородность и изотропию пространства. Тем самым подрываются основы определения инерциальной системы координат. Макроскопическое (неточечное) тело нарушает свойства пространства Минковского: его однородность и изотропию. Поэтому становится проблематичным его использование для описания макроскопического тела. Это рассуждение - пример мысленного эксперимента. В нашем распоряжении нет твердых тел, которые можно разгонять до релятивистских скоростей, и поэтому непосредственная экспериментальная проверка выводов теории относительности применительно к макроскопическим телам затруднительна. Теоретические же рассуждения на эту тему (релятивистские преобразования температуры) лишены убедительности и однозначности, характерных для специальной теории относительности точечных тел. Но закроем глаза на эти проблемы, уводящие в сторону от основной линии книги, и попробуем применить эту теорию к конкретному макроскопическому телу - вращающемуся диску, знаменитому диску Эйнштейна. Пусть диск, являющийся абсолютно твердым телом, вращается равномерно вокруг своего центра. Очевидно, что линейные скорости точек диска, расположенные на разных расстояниях от центра, будут различны (пропорциональны расстояниям r). Тогда в соответствии с формулами (29) в этих точках будет различное сокращение. Пространство станет неоднородным, а следовательно, неевклидовым. Вращение диска есть неинерциальное ускоренное движение. Из этих двух фактов Эйнштейн заключил, что ускоренное движение нарушает евклидовость (псевдоевклидовость) пространства.







Date: 2015-07-01; view: 283; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.03 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию