Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Загальна теорія систем





Будь-яка система управління (як технічна, так і організаційна) базується на двох основних принципах управління:

- управління по збуренню;

- управління по відхиленню.

Можлива побудова системи з використанням обох принципів одночасно, - така система є комбінованою. Кожен об'єкт управління має: змінну, якою управляють (φ); змінну, яка управляє (μ); збурення (λ).

Система управління по збуренню. Структурна схема системи, що реалізує принцип управління по збуренню має наступний вигляд:

 

 
 

 


 

Рис.1. Структурна схема системи управління по збуренню λ.

 

На рис.1 зображено: OY – об'єкт управління, що має вихідну змінну φ (наприклад, власний обсяг продажу), та дві вхідні змінні: μ – змінна, яка управляє (наприклад, ціна продажу), і λ – збурення, що впливє на φ, але не залежить від μ (наприклад, обсяг продажу конкурентів); Кр – регулятор (наприклад, регулятор ціноутворення), який змінює μ залежно від відхилення (ε) між завданням на продаж ψ та інформацією (λn) про збурення λ, що має місце на поточний час; компаратор ε = (ψ – λn), який порівнює ψ з λn та впливає на рішення про змінення змінної, яка керує (μ).

Коефіцієнти, що знаходяться в квадратах-блоках системи, означають відповідно:

Кλ – коефіцієнт впливу λ на λn, тобто λn = Кλ λ (якщо інформація про λ

надходить без перекручень, то Кλ = 1);

Кр – коефіцієнт впливу ε на μ, тобто μ= Кр ε = Кр(ψ – λn);

К1 та К2 – відповідно коефіцієнти впливу μ та λ на φ, тобто φ= К1μ + К2λ. По суті, φ = К1μ+ К2λ представляє собою лінійну математичну модель системи (наприклад, системи збуту автомобілів, якщо вважати К1 = – а та К2= – b).

Враховуючи сказане вище, можна визначити залежність φ від ψ та λ таким чином:

 

φ= К1μ+ К2λ = К1Кр(ψ – λn) + К2λ = К1Кр(ψ – Кλ·λ) + К2λ =

 

= К1Крψ – К1КрКλ·λ + К2λ

Накінець матимемо:

 

ψ= К1Крψ – (К1КрКλ – К2)λ (22)

 

Щоб забезпечити незалежність φ від λ, необхідне виконання умови К1КрКλ – К2 = 0, тобто КрКλ = К2 / К1. Якщо прийняти Кλ = 1 (інформація надходить без перекручень), то матимемо:

 

Кр1 / К2, (2) (23)

 

тобто необхідну величину коефіцієнта Кр, що забезпечить незалежність φ від λ.

Таким чином, маючи модель системи збуту автомобілів, як вказано в одному з варіантів завдання, можна визначити необхідне значення коефіцієнта ціноутворення Кр, який забезпечує незалежність власного обсягу продажу від обсягу продажу конкурентів шляхом відповідної зміни вартості продажу. Студенту залишається тільки правильно визначити, чи відповідає його варіант завдання розглянутому типу системи.

Система управління по відхиленню. На відміну від попереднього типу систем управління, системи цього типу мають безпосередній зв'язок змінної, якою управляють (φ), з компаратором системи (так званий зворотній зв'язок виходу зі входом). Структурна схема систем цього типу представлена на рис.2.

 

 


Рис.2. Структурна схема системи управління по відхиленню ε.

 

Позначення елементів системи прийняти ті ж, що і в попередній системі. Згідно з рис.2 зміна значення змінної μ, яка керує значенням φ, здійснюється з урахуванням відхилення ε= ψ – φn. Завдяки зв'язку між φn та φ, через коефіцієнт впливу Коз, система діє таким чином, щоб величина відхилення ε була мінімальною навіть тоді, коли має місце значне збурення λ. Відмітимо, що в першому завданні цієї самостійної роботи є як системи управління по збуренню, так і системи управління по відхиленню. Якщо запропонована система збуту автомобілів відноситься до систем цього типу (тобто керує ціною збуту згідно з коливаннями обсягу власного продажу), то в такому випадку розв'язок даної задачі необхідно проводити за допомогою формул, що приводяться нижче.

Математична модель об'єкту залишається в тому ж вигляді: φ = К1μ + К2λ, але з урахуванням ε= ψ – φn; φn = Коз·φ; μ= Кр·ε, будемо мати:

 

φ = (24)

 

що визначає залежність коливань φ від коливань завдання ψ та коливань збурення λ (для задачі, що пропонується в завданні, це залежність коливань обсягу продажу (Vn) від коливань завдання на продаж (ψ) та коливань обсягу продажу конкурентів (Vк). Всі ці змінні вимірюються у відсотках відхилення від сталого значення.


За допомогою формули (24) можна розрахувати коливання Vn (у відсотках) при заданих розмірах коливань Vk (у відсотках) та заданому значенні коефіцієнта регулятора ціноутворення при незмінності завдання (коли ψ = 0).

Неважко продемонструвати, що коливання ціни продажу (μ) визначається за формулою:

 

μ = (25)

 

При ψ = 0 можна визначити μ при заданих λ та Кр. У випадку, коли необхідно визначити коливання відхилення ε (у нашому випадку – це складські залишки непроданих автомобілів), розрахунки слід проводити за формулою:

 

ε = φ – φп = ψ - Козφ = (26)

 

Додамо наприкінці, що потрібно прийняти Коз = 1, якщо інформація про обсяги власного продажу надходить у систему без перекручень.







Date: 2015-07-01; view: 421; Нарушение авторских прав



mydocx.ru - 2015-2025 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию