Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Моделирование случайной величины с произвольным законом распределения
В основе моделирования случайных величин с произвольными законами распределения вероятностей лежит, как правило, метод обратной функции. В этом методе используется следующая теорема. Теорема. Если случайная величина имеет плотность распределения вероятностей , то распределение случайной величины
равномерно в интервале , т. е. По определению, является функцией распределения случайной величины . Теорема может быть проиллюстрирована графиками, представленными на рис. 3.10. Обозначим: - -е число из , - -е случайное число из произвольного распределения.
Моделировать равномерно распределенное случайное число мы уже умеем. Нужно найти неизвестное , находящееся в верхнем пределе интегрирования. Относительно ыражение принимает вид: Отсюда и название - "метод обратной функции". Пример 3.6. Получить формулу для моделирования случайных чисел, распределенных по экспоненциальному закону, с параметром (матожиданием ). Плотность и функция этого распределения имеют вид (рис. 3.11): Решение Поскольку случайная величина имеет равномерное распределение в интервале , как и , то справедливо: Примеров подобного аналитического преобразования случайного числа в случайное число из произвольного распределения немного, так как для многих законов распределения, встречающихся в практике моделирования, интеграл (3.1) относится к неберущимся, а численные методы решения увеличивают затраты машинного времени.
Поэтому в современных системах моделирования применяется приближенный метод обратной функции, основанный на кусочно-линейной аппроксимации функции распределения моделируемой случайной величины. Суть метода заключается в следующем. Требуемый закон распределения случайной величины размещается в памяти компьютера в виде координат функции распределения. Каждая координата состоит из случайного числа и соответствующего значения функции распределения : Чем больше координат, тем точнее будет моделирование. Приемлемая точность обеспечивается заданием 20…30 координат. При обращении за очередным случайным числом нужного закона распределения сначала генерируется случайное число из . Это число сравнивается со значениями . При совпадении выдается соответствующее случайное число . Если нет совпадения, то случайное число вычисляется из подобия треугольников, как показано на рис. 3.12.
Из подобия треугольников ABC и AB'C' следует: Отсюда по находится значение . Значительную роль в моделировании играет случайная величина, имеющая нормальное распределение. Метод обратной функции в аналитическом виде здесь неприемлем, так как интеграл (3.1) неберущийся, а его численное решение громоздко. Для генерации случайных чисел, подчиненных нормальному распределению, применяется метод обратной функции с кусочно-линейной аппроксимацией, а также метод, основанный на центральной предельной теореме (ЦПТ) теории вероятностей. Как известно, ЦПТ дает теоретическое объяснение подтвержденному практикой наблюдению: если исход случайного события определяется большим числом случайных факторов, и влияние каждого фактора мало, то такой случайный исход хорошо аппроксимируется нормальным распределением. Эта теорема имеет много формулировок. Одна из наиболее практичных для целей моделирования случайных последовательностей - теорема Леви-Линдеберга. Теорема. Случайная величина где - сумма случайных чисел одного и того же распределения с матожиданием и дисперсией при асимптотически стремится к нормальному распределению с и дисперсией . Удобно случайные числа брать из рассмотренного датчика . В этом случае , . Хорошее приближение к нормальному распределению получается уже при числе . Каждое случайное число при генерируется так: Недостаток способа состоит в том, что он не экономичен, так как для генерирования одного случайного числа требуется шесть случайных чисел из распределения . В ряде случаев применяют датчики с числом . Тогда Если датчик случайных чисел нормального распределения выдает стандартную последовательность чисел с , , то пересчет на произвольное значение характеристик выполняется так: где - требуемое значение матожидания; - требуемое значение среднего квадратического отклонения; - случайное число из нормального распределения с математическим ожиданием и средним квадратическим отклонением . В современных системах моделирования имеются встроенные датчики, позволяющие непосредственного задавать нужную случайную величину с требуемыми значениями характеристик. Однако если исследователя эти возможности не удовлетворяют (например, по точности представления функции распределения вероятностей), то он может задать требуемый закон распределения самостоятельно. Date: 2015-07-17; view: 491; Нарушение авторских прав |