Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Особенности разработки и эксплуатации многопластовых газоывых месторождений.⇐ ПредыдущаяСтр 21 из 21
Задача разработки существенно осложняется при необходимости отбирать газ из многопластового месторождения. В этом случае приходится рассматривать очередность разработки отдельных пластов, распределение отборов, возможности и способы совместной эксплуатации различных объектов. Многопластовые газовые месторождения могут быть подразделены на два основных вида: к первому относятся такие месторождения, в которых начальные пластовые давления в каждом из пластов примерно соответствуют давлению гидростатического столба воды; ко второму виду относятся те, в которых начальное давление в горизонтах отличается на давление, соответствующее весу столба газа. В этом случае единая залежь разделена но высоте перемычками, при помощи которых горизонты могут сообщаться или быть изолированными. Эксплуатировать многопластовые месторождения можно раздельно скважинами, пробуренными на каждый горизонт, и скважинами, вскрывшими все продуктивные горизонты. При раздельной эксплуатации для экономии числа скважин часто осуществляют эксплуатацию при помощи разобщителей (пакеров). В этом случае газ из нижнего горизонта поступает в фонтанные трубы, а из верхнего горизонта — в затрубное пространство. Многопластовые месторождения можно разрабатывать различными системами. Рассмотрим основные из них. 1. Вначале разрабатывают верхние горизонты, а в последующем — более глубокие. Эту систему разработки, называемую сверху — вниз, применяют в случае, если запасы верхних горизонтов и пластовые давления достаточны для обеспечения потребителей газом, а бурение нижних горизонтов связано со значительными капиталовложениями, техническими трудностями и прирост добычи с последних ожидается незначительный. При этом следует изучать возможность использования эксплуатационных скважин верхнего горизонта для последующего добуривания их на нижележащие. Иногда для второго вида многопластовых месторождений при наличии сверхдавлений, т. е. когда давление в верхних пластах выше гидростатического, а в нижних пластах приближается к гидростатическому, может быть также применена частичная система разработки сверху — вниз. В таких месторождениях обычно затруднена проходка скважин, так как требуется утяжеление глинистого раствора баритом или гематитом с целью предотвращения выбросов при вскрытии верхних горизонтов. Последующее вскрытие нижних горизонтов этим же раствором может привести к значительному поглощению глинистого раствора и засорению призабойной зоны. В результате резко ухудшится продуктивная характеристика и уменьшатся рабочие дебиты по скважинам, пробуренным на нижние горизонты. В этом случае целесообразно иногда начинать эксплуатацию верхних горизонтов до снижения в них давления до гидростатического. Это позволит разбурить нижележащие горизонты без осложнений и приступить к разработке пласта без спуска дополнительной промежуточной обсадной колонны. 2. Вначале разрабатывают нижние горизонты, а затем верхние. Эту систему, называемую снизу — вверх, применяют обычно для первого вида многопластовых месторождений, т.е. когда запасы газа в нижних горизонтах значительно превышают запасы верхних горизонтов, а давление в верхних горизонтах недостаточно для обеспечения бескомпрессорной подачи газа потребителям. Кроме того, эту систему разработки можно применять для понижения давления в нижних горизонтах до давления, отличающегося от верхнего на вес столба газа, т. е. когда месторождение первого вида следует превратить во второй. После этого можно одновременно эксплуатировать верхние и нижние горизонты, что позволяет исключить переток газа из нижележащих горизонтов в вышележащие при последующей их разработке. При разработке по системе снизу — вверх скважинами, вначале эксплуатировавшими нижние пласты, после цементирования в них низа колонны и последующей перфорации или после установки пакеров можно также эксплуатировать верхние горизонты. 3. Одновременная система разработки верхних и нижних горизонтов может быть осуществлена как раздельной эксплуатацией скважин с каждого горизонта, так и совместной эксплуатацией с применением пакеров или без них в одной скважине. Эта система позволяет получить требуемое количество газа с наименьшим числом скважин. Разработка скважинами всех горизонтов наиболее удобна для месторождений второго вида. Систему эксплуатации ряда горизонтов в одной скважине можно применять в случае когда состав газа по различным горизонтам не отличается по содержанию сероводорода и когда крепость пород и их коллекторские свойства также примерно одинаковы, что не приводит к резкому различию предельно допустимых депрессий по отдельным горизонтам и выходу из строя большенства скважин вледсвие быстрого обводнения одного из горизонтов. При отсутствии изложенных условий такая эксплуатация ряда горизонтов в одной скважине может оказаться невыгодной. Например, в верхнем пласте могут быть получены высокие дебиты при высоких депрессиях на пласт, так как пласт представлен крепкими породами. Нижний пласт сложен рыхлыми породами и может эксплуатироваться только при небольших депрессиях. Эксплуатация этих двух горизонтов в одной скважине приведет к тому, что нельзя будет допустить высокие депрессии, так как произойдет разрушение нижнего пласта, а следовательно, и не будет эффекта от эксплуатации их в одной скважине без разделения. При эксплуатации в одной скважине одновременно нескольких горизонтов месторождений первого вида, когда давления отличаются между собой на давление гидростатического столба воды, может возникнуть переток газа из одних горизонтов в другие. При остановке скважины также будет наблюдаться переток газа. Поэтому во время эксплуатации без разобщения ряда горизонтов в одной скважине с целью получения наибольшего дебита следует учитывать все факторы в данных конкретных условиях. Одновременная разработка с пакерами или отдельными скважинами позволяет широко использовать эжекцию газа для повышения давления газа, полученного из пластов с низким давлением. Выбор системы разработки зависит от многих факторов: давления, запасов газа, параметров пласта, продвижения вод и допустимых рабочих дебитов с отдельных горизонтов, а также от состава газа. Если в одних пластах содержится в газе сероводород, а в других он отсутствует, то для транспортировки газа с сероводородом и без него нужны отдельные газосборные сети. Если в верхних пластах содержится сухой газ, а в нижних значительное количество конденсата, то условия эксплуатации каждого горизонта будут различными. Выбор системы разработки определяется, исходя из технико-экономических показателей с учетом потребности в газе данного района. Для решения задачи разработки группы газовых месторождений или многопластовых месторождений приходится строить электрические и гидродинамические модели, использовать современную вычислительную технику. В данной постановке после установления отборов газа по отдельным залежам, периодов нарастающей, постоянной и падающей добычи приступают к выбору оптимального варианта разработки путем проведения соответствующих гидро-, газо- и термодинамических расчетов и анализа полученных результатов. Условия движения газа и соответственно уравнения, его описывающие, различны в отдельных звеньях этой системы. В связи с этим газогидродинамические расчеты сводятся к совместному решению дифференциальных уравнений, описывающих движение газа и воды в пласте, приток газа к отдельным скважинам, течение газа по стволу скважины и в газосборной системе, а также в аппаратах очистки, осушки и учета газа.
3. Действия оператора при обильном выделении газа в помещениях ГРП.
4. Штуцеры, их назначение, типы, устройство.
5. Техника безопасности и правила проведения газоопасных работ
Билет № 18 1. Коэффициент нефте-газо-водонасыщенности.
2. Запорная арматура, используемая на ГРП, типы, классификация
3. Импульсные линии и требования к ним при эксплуатации.
4. Сроки поверок манометров и приборов измерения расхода газа.
5. Меры безопасности при продувке газопровода.
Билет № 19 1. Перфорация скважин, виды перфорации.
2. Оборудование, применяемое для подземного ремонта скважин
3. Технологический режим скважины.
В процессе добычи газа из газовой залежи скважины, шлейфы, сепараторы, теплообменники, абсорберы, десорберы, турбодетандеры, компрессоры и другое оборудование промысла работает на определенном технологическом режиме. Технологическим режимом эксплуатации газовых скважин называется рассчитанное изменение во времени дебита, давления, температуры и состава газа на устье скважины при принятом условии отбора газа на забое скважины. Условием отбора газа на забое скважины называется математическая запись фактора, ограничивающей дебит скважины при ее эксплуатации. В предыдущей главе отмечалось, что технологический режим эксплуатации скважин зависит от типа газовой залежи (пластовая, массивная), начального пластового давления и температуры, состава пластового газа, прочности пород газовмещающего коллектора и других факторов. Он устанавливается по данным режимных исследований скважин с использованием специального подземного и наземного (поверхностные породоуловители, измерители интенсивности коррозии) оборудования и приборов (нейтронный, акустический, плотностный каротаж, шумомеры, глубинные дебитомеры, измерители давления и температуры). В практике эксплуатации газовых скважин на различных месторождениях газ отбирают при следующих условиях на забое скважин. 1. Режим постоянного градиента на забое скважины Режим постоянного градиента характерен для условий эксплуатации залежи, приуроченной к относительно неплотным породам, способным разрушаться при достаточно больших отборах газа из скважины. Во избежании этого скважину следует эксплуатировать при градиенте давления на забое менее допустимого. При определении допустимого градиента надо учитывать следующих два момента: На месторождениях с рыхлыми коллекторами в ряде случаев из-за неправильного выбора глубины спуска и диаметра насосно-компрессорных труб отсутствие выхода песка на поверхность ещё не является подтверждением правильности выбора величины градиента. Кроме того, разрушение пласта при величине градиента, превышающего его допустимое значение, при котором не происходит разрушения, не является столь опасным, как это кажется на первый взгляд, так как для каждого значения заданного градиента существует область возможного разрушения, что приводит при значениях градиентов, превышающих допустимую величину, вначале к интенсивному выносу песка с последующему снижению его количества. Для заданной устойчивости коллектора нетрудно определять радиус зоны разрушения для различных величин градиента на забое. При установлении технологического режима работы скважин по разрушению коллекторов, как правило, отсутствуют данные, позволяющие оценить устойчивость коллекторов. Поэтому не обоснованная величина градиента давления приводит к большим погрешностям и, следовательно, либо к искусственному занижению производительности скважин, либо к накоплению песчано-глинистых пробок против продуктивного интервала. 2. Режим постоянной депрессии на пласт Режим постоянной депрессии устанавливается при различных факторах, к которым относятся: близость подошвенной и контурной воды; деформация коллектора при значительных депрессиях; условия смятия колонны; возможность образования гидратов в пласте и стволе скважины и др. В отличии от режима постоянного градиента, ограничиваемого величиной устойчивости пород к разрушению, пределы, ограничивающие величину депрессии, могут быть определены аналитическим путём независимо от того, по какому из факторов(подошвенная или контурная вода, деформация пласта, гидраты и т.д.) выбирается постоянная депрессия. Кроме того, в отличие от режима постоянного градиента режим постоянной депрессии на пласт по ряду факторов (подошвенная или контурная вода, гидраты др.) является переменной величиной в процессе разработки. Так, при наличии подошвенной воды сначала устанавливается величина допустимой депрессии в зависимости от вскрытой и газоносной мощности пласта, пластового давления и плотности воды и газа на данный момент времени. Но так как величина пластового давления, плотность воды и газа, а также положение ГВК являются переменными во времени, то устанавливаемая величина допустимой депрессии на пласт является функцией времени в процессе разработки. Изменение величины допустимой депрессии при газовом режиме является линейной функцией пластового давления. Если величина депрессии установлена исходя из возможной деформации пласта, то эта величина является слабо переменной величиной во времени и её можно сохранить постоянной достаточно длительное время. Снижение депрессии приведёт в этом случае не к существенным изменениям осложнениям, а просто к некоторому изменению производительности скважин. Аналогичные расчеты можно повести и при образовании гидратов. В целом режим постоянной депрессии несущественно отличается от режима постоянного градиента, и расчет основных показателей практически одинаков. В ряде случаев допустимая депрессия на скважинах устанавливается с самого начала с целью получения максимально возможного дебита. Иногда предельно допустимая депрессия хотя и устанавливается с самого начала эксплуатации, но достигается в процессе разработки, что связано с конструкцией скважин, устьевыми условиями и т.д. Этот случай близок к режиму постоянного дебита. 3. Режим постоянного забойного давления (). Данный режим встречается довольно редко и в основном используется тогда, когда дальнейшее его снижение нежелательно из-за выпадения конденсата при разработке газоконденсатных месторождений. В отличии от предыдущих режимов режим постоянного забойного давления является наихудшим вариант с точки зрения темпа снижения производительности скважин. Эксплуатация газовых скважин на режиме при рз=const характеризуется резким уменьшением во времени расхода газа, из-за чего необходимо прогрессивно увеличивать число скважин для поддержания заданного отбора газа с месторождения. Режим постоянного забойного давления является временным (особенно при наличии газового режима залежи), и через определённый период эксплуатации требуется замена установленной величины на новое, более низкое значение или переход от указанного режима на какой-нибудь другой. 4. Режим постоянного дебита. (). Этот режим наиболее выгоден, если величина дебита при этом соответствует максимальным способностям пласта и скважины. Режим постоянного дебита устанавливается при отсутствии опасности прорыва подошвенных и контурных вод, разрушения пласта (хотя бы до определённого предела, с которого начинается разрушение), превышения допустимой величины скорости потока. Это практически возможно для крепких коллекторов до достижения определённой величины градиента на забое или величины устьевого или забойного давлений при заданной конструкции скважины и системы сбора, осушки и очистки газа. Режим постоянного дебита на определённой стадии разработки, особенно вначале, может быть установлен при наличии коррозии забойного оборудования и насосно-компрессорных труб, наличия жидкостных или песчаных пробок и т.д. Величина дебита при этом режиме устанавливается темпом (скоростью) коррозии, пропускной способностью забойного оборудования, скоростью потока, обеспечивающей вынос жидкости и твердых частиц, потенциальной отдачей пласта и наземными условиями. Дебит выбирают с таким расчётом, чтобы не наблюдалось опасной вибрации оборудования на устье скважины. При этом наблюдается рост депрессии в пласте и с течением времени она достигает значительной величины. При достижении максимально допустимого значения депрессии необходимо для скважины устанавливать другой технологический режим, н.п. y=const или Dр=const, при котором не произойдет осложнений. 5. Режим постоянной скорости фильтрации на забое. Этот режим применяют в том случае, если имеется опасность разрушения несцементированного коллектора, а также в случае значительного выноса с забоя и призабойной зоны глинистого раствора и твердых частиц, если прискважинное оборудование не в состоянии эффективно очистить струю газа. Данный режим наилучшим образом соответствует оптимальным условиям работы первой ступени сепарации. Если режим постоянного дебита отчасти соответствует конструкции скважины, то режим постоянной скорости фильтрации в полной мере относится к призабойной зоне пласта, точнее к стенке скважины. 6. Режим постоянного градиента по оси скважины Указанный режим применяется в крепких коллекторах при наличии подошвенной воды. 7. Режим постоянной скорости газа на устье. Если в составе пластового газа имеются компоненты, вызывающие коррозию колонны НКТ и оборудования устья скважины (СО2, кислоты жирного ряда), фактором, ограничивающим дебит скважины, служит допустимая линейная скорость коррозии. Условием отбора газа будет максимально допустимая скорость газа в верхнем поперечном сечении колонны НКТ, при которой линейная скорость коррозии имеет допустимое значение. Экспериментально установлено, что при скорости газового потока меньше 11 м/с линейная скорость коррозии, обусловленной наличием СО2 не превышает 0.1 мм/год. Для поддержания заданного условия отбора газа на забое или устье скважины во время эксплуатации необходимо на головке скважины при индивидуальном регулировании или на групповом пункте сбора и подготовки газа при групповом методе регулирования скважин изменять дебит или давление газа в соответствии с расчетом. Изменение дебита (давления) осуществляется при помощи различных технических средств: · нерегулируемыми штуцерами постоянного или переменного диаметра; · регулируемыми штуцерами; · регуляторами давления; · расширительными машинами. Следует отметить, что режим постоянной скорости потока на устье приводит к резкому снижению дебита скважины. Выбор более эффективного технологического режима при наличии агрессивных компонент связан с необходимостью применения труб с коррозийно-стойким покрытием, бурением скважин большого диаметра (с целью замены фонтанных труб на трубы большего диаметра в процессе разработки), а также использованием ингибиторов коррозии. В условиях образования песчаной пробки, столба жидкости или гидратообразования технологический режим, обусловленный определённой скоростью на устье, может оказаться практически непригодным. Поэтому при необходимости выбора режима с постоянной скоростью потока необходимо проверять возможность образования гидратов и пробок в стволе скважины.
4. Способы присоединения запорной арматуры.
5. Безопасные способы ликвидации гидратных пробок в газопроводах, арматуре и оборудовании.
Билет № 20 1. Назначение и способы освоения скважины. Date: 2016-07-25; view: 557; Нарушение авторских прав |