Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Судовые насосы, назначение, классификация, основные параметры
Насосы представляют собой гидравлические машины, предназначенные для перемещения жидкостей под напором. Преобразуя механическую энергию приводного двигателя в механическую энергию движущейся жидкости, насосы поднимают жидкость на определенную высоту, подают ее на необходимое расстояние в горизонтальной плоскости или заставляют циркулировать в какой-либо замкнутой системе. Выполняя одну или несколько упомянутых функций, насосы в любом случае входят в состав оборудования насосной станции, принципиальная схема которой применительно к условиям водоснабжения и канализации. В этой схеме для привода насоса используется электродвигатель, подключенный к электрической сети. Вода или другая рабочая жидкость забирается насосом из нижнего бассейна и перекачивается по напорному трубопроводу в верхний бассейн за счет преобразования энергии двигателя в энергию жидкости. Энергия жидкости, прошедшей через насос, всегда больше, чем энергия перед насосом. Основными параметрами насосов, определяющими диапазон изменения режимов работы насосной станции, состав ее оборудования и конструктивные особенности, являются напор, подача, мощность и коэффициент полезного действия. Напор представляет собой приращение удельной энергии жидкости на участке от входа в насос до выхода из него. Выраженный в метрах напор насоса определяет высоту подъема или дальность перемещения жидкости Подача характеризуется объемом жидкости, подаваемой насосом в напорный трубопровод в единицу времени, и измеряется обычно в м/с, л/с или м3/ч. Мощность, затрачиваемая насосом, необходима для создания нужного напора и преодоления всех видов потерь неизбежных при преобразовании подводимой к насосу механической энергии в энергию движения жидкости по трубопроводам. Измеряемая в кВт мощность насоса определяет мощность приводного двигателя и суммарную (установленную) мощность насосной станции. Коэффициент полезного действия учитывает все виды потерь связанных с преобразованием насосом механической.энергии двигателя в энергию движущейся жидкости. КПД определяет экономическую целесообразность эксплуатации насоса при изменении остальных его рабочих параметров (напора, подачи, мощности). История возникновения и развития насосов показывает, что первоначально они предназначались исключительно для подъема воды. Однако в настоящее время область их применения настолько широка и многообразна, что определение насоса как машины для перекачивания воды было бы односторонним. Помимо водоснабжения и канализации городов, промышленных предприятий и электростанций насосы применяются для орошения и осушения земель, гидроаккумулирования энергии, транспортирования материалов. Существуют питательные насосы котельных установок тепловых электростанций, судовые насосы, насосы для нефтяной, химической, бумажной, пищевой и других отраслей промышленности. Насосы используются при производстве строительных работ (намыв земляных сооружений, водопонижение, откачивание воды из котлованов, подача бетона и строительных растворов к сооружениям и ъ П.), при разработке месторождений и транспортировании полезных ископаемых гидравлическим способом, при гидроудалении отходов производственных предприятий» & качестве вспомогательных устройств насосы служат для обеспечения" смизки и охлаждения машин. Таким образом, насосы являются одним из наиболее распространенных видов машин, прлчем их конструктивное разнообразие чрезвычайно велико, поэтому классификация насосов по их назначению весьма затруднительна. Более логичной представляется классификация, основанная на различиях в принципе действия. В динамических насосах жидкость движется под силовым воздействием в камере постоянного объема, сообщающейся с подводящими и отводящими устройствами. В зависимости от вида силового воздействия на жадкость динамические насосы в свою очередь, делятся на логгастные насосы и насосы трения. Объемные насосы работают по принципу вытеснения жидкости из камеры за счет уменьшения ее объема. Периодическое изменение объема камеры происходит за счет возвратно-поступательного или вращательного движения рабочего органа насоса. Попеременное заполнение камеры перекачиваемой жидкостью и ее опорожнение обеспечиваются клапанными устройствами входного и выходного патрубков насоса. Конструктивное исполнение насосов различных типов определяется в основном видом их рабочих органов. Кроме классификаций, существует также разделение насосов по виду перекачиваемой жидкости, по виду привода и по другим классификационным признакам. Необходимо отметить, что, несмотря на большие различия в принципе действия, конструкции насосов всех типов, включая насосы, применяемые в системах водоснабжения и канализации, должны удовлетворять требованиям, к числу которых в первую очередь относятся: надежность и долговечность работы; экономичность и удобство эксплуатации; изменение рабочих параметров в широких пределах при условии сохранения высокого КПД; минимальные размеры и масса; простота устройства, заключающаяся в минимальном числе деталей и полной их взаимозаменяемости; удобство монтажа и демонтажа. Выбор типа насоса в каждом конкретном случае производится с учетом его эксплуатационных и конструктивных качеств, наиболее полно удовлетворяющих технологическому назначению рассматриваемой насосной станции.
49. Шестеренный, винтовой, пластинчатый насосы: устройства, принципы действия, напорные характеристики. Шестеренный насос — это зубчатый насос с рабочими органами в виде шестерен, обеспечивающих герметическое замыкание рабочих камер и передачу вращающего момента с ведущего вала на ведомый. Шестеренные насосы могут быть с внешним и внутренним зацеплением. Наиболее простым по конструкции и самым распространенным является шестеренный насос с внешним зацеплением (рисунок 1.16). Он состоит из корпуса 4 и двух эвольвентных зубчатых колес (шестерен) 1 и 3,находящихся в зацеплении. В представленной конструкции ведущей является шестерня 1,аведомой — 3. При выходе зубьев из зацепления во всасывающей полости рабочий объем увеличивается и жидкость заполняет впадины между зубьями (в том числе затемненную впадину 2). Затем впадины с жидкостью перемещаются по дугам окружности от полости всасывания в полость нагнетания (показано штрихпунктирной линией). В полости нагнетания зубья входят в зацепление, рабочий объем уменьшается и жидкость вытесняется в полость нагнетания. Следует иметь в виду, что впадины несколько больше зубьев, поэтому часть жидкости возвращается обратно в полость всасывания. Таким образом, рабочей камерой шестеренного насоса является впадина между зубьями, точнее, та часть ее объема, которую занимает зуб при вытеснении жидкости. Для приближенного определения рабочего объема насоса V0 принимают объемы зубьев и впадин равными. Тогда можно считать, что рабочий объем насоса равен суммарному объему всех впадин и зубьев одной шестерни и может быть определен по формуле , (1.35) где D — диаметр начальной окружности шестерни; b — ширина шестерни; h — высота зубьев (глубина впадин). Для анализа влияния параметров зацепления на рабочий объем насоса целесообразно связать его с модулем зацепления. Так как высота зуба равна двум модулям (h = 2т),а диаметр начальной окружности шестерни — произведению модуля и числа зубьев (D = mz),то (1.35) преобразуется в формулу . Формула позволяет сделать вывод, что рабочий объем V0 увеличивается пропорционально числу зубьев z в первой степени и квадрату модуля т. Таким образом, для увеличения подачи насоса целесообразнее увеличивать модуль зацепления т за счет снижения числа зубьев z. На практике обычно применяют насосы с числом зубьев z= 8...18. Шестеренные насосы с внешним зацеплением получили широкое распространение в машиностроении, так как они просты в изготовлении и надежны в эксплуатации. Эти насосы выпускаются для гидросистем как с высокими давлениями (до 15...20 МПа), так и с более низкими (1...10 МПа). Первые находят применение в гидросистемах тракторов, дорожно-строительных и сельскохозяйственных машин, а вторые используются в станочных гидроприводах и гидросистемах поршневых двигателей. Частоты вращения большинства шестеренных насосов с внешним зацеплением находятся в диапазоне 1000...2500 об/мин. Полные КПД этих насосов обычно составляют 0,75...0,85, а объемные КПД — 0,85...0,95. Кроме шестеренных насосов с внешним зацеплением, бывают также шестеренные насосы с внутренним зацеплением, когда шестерня меньших размеров располагается внутри более крупного зубчатого колеса. Такие насосы компактнее, но из-за более сложной конструкции по сравнению с насосами с внешним зацеплением они не нашли широкого применения. 50. Аксиально-плунжерный и радиально-плунжерный насосы: устройства, принципы действия, напорные характеристики. Аксиально-плунжерный насос с наклонным блоком отличается тем, что у него относительно оси вращения вала наклонен не диск, а блок. Из-за наклона блока относительно ведущего вала у большинства насосов такой конструкции имеется карданный вал с шарнирами для передачи вращающего момента от диска на блок. Принцип действия насосов с наклонным блоком и наклонным диском одинаковый. При перемещении плунжеров рабочие камеры меняют свой объем от минимального до максимального и обратно, при этом жидкость поступает в рабочую камеру или вытесняется из нее в полость нагнетания через дугообразные окна 1. Упорный диск; 2- шатун; 3- поршень; 4- блок цилиндров (ротор); 5- неподвижный распределитель; 6- двойной кардан; 7- входной вал. Роторно–поршневой насос аксиально–плунжерного типа с наклонным диском. Основным элементом насоса является блок с плунжерами, который приводится в движение валом и вращается относительно корпуса. Плунжеры опираются на упорный подшипник диска, наклоненного под углом. Важным элементом насоса является неподвижный торцевой распределитель с дугообразными окнами. Распределитель осуществляет связь рабочих камер насоса с полостями всасывания и нагнетания насоса, т. е. выполняет функцию всасывающего и нагнетательного клапана, которые используются для этой цели в насосах возвратно-поступательного действия. Рабочие камеры насоса представляют собой объемы внутри блока. При работе насоса плунжеры вращаются вместе с блоком и одновременно скользят вместе с подшипником по наклонному диску. За счет наклона диска и соответственно полости подшипника обеспечивается возвратно-поступательное движение плунжеров относительно блока. Достоинства · Способность работать при высоких давлениях; · Принципиальная возможность реализовать регулируемость рабочего объёма; · Большая частота вращения (в сравнении с радиально-плунжерными гидромашинами). Недостатки · Сложность конструкции и связанная с этим низкая надёжность; · Высокая стоимость данного типа гидромашин; · Большие пульсации подачи (для насосов) и расхода (для гидромотора), и как следствие, большие пульсации давления в гидросистеме.
Радиально-поршневые насосы — это разновидность роторно-поршневых гидромашин. Эти насосы применяются для гидросистем с высоким давлением (свыше 40МПа). Эти насосы способны длительно создавать давления до 100МПа.Отличительной особенностью насосов данного типа является их тихоходность, частота вращения насосов данного типа как правило не превышает 1500-2000 об/мин. Частоты вращения до 3000 об/мин можно встретить только для насосов рабочим объемом не более 2-3 см3/об. Радиально-поршневой насос состоит из посаженного на цапфу 5 цилиндрового блока 1 с звездообразным расположением цилиндров (рис. а), а также смещённого на величину е относительно блока статорного кольца 3, помещённого в игольчатом подшипнике 4. При работе агрегата в качестве насоса поршни 2 связываются со статором 3 при помощи различных механических устройств или пружин, помещённых в цилиндры, а также при помощи давления жидкости, подаваемой вспомогательным насосом (насосом подкачки). Поршни под действием давления жидкости и центробежной силы прижимаются к статорному кольцу 3, вступая с ним во фрикционное взаимодействие, в результате чего последнее будет следовать за ротором с угловой скоростью, практически равной угловой скорости последнего. Благодаря наличию роликов 4 практически устраняется при вращении цилиндрового блока 1 трение скольжения поршней о статорное кольцо. В радиальных насосах в основном применяется цапфовое распределение жидкости, которое осуществляется через распределительные окна а и b (рис.б), выполненные в цапфе 5, с которыми поочерёдно соединяются при вращательном движении цилиндры ротора 1. Окна а и b через осевые каналы в цапфе соединяются с внешними всасывающим и нагнетающим трубопроводами. При проходе поршней от центра жидкость при вращении блока (ротора) 1 в направлении стрелки (см. рис. а) будет засасываться поршнем через окно а, а при ходе к центру – вытесняться (нагнетаться) через окно b. При переходе поршней через нейтральное положение (вертикальную ось) каналы цилиндров перекрываются уплотнительной частью (перевальной перемычкой) k распределительной цапфы 5 (см. рис. б). Величина хода поршней равна двойной величине эксцентриситета е. Радиально-поршневые насосы бывают двух типов: · С эксцентричным ротором · С эксцентричным валом Радиально-поршневой насос с эксцентричным ротором. Конструктивно поршневая группа насоса установлена в роторе насоса. Ось вращения ротора и ось неподвижного статора смещены на величину эксцентриситета e. При вращении ротора поршни совершают поступательное движение. Величина хода составит 2e. Насос данной конструкции имеет золотниковое распределение. При вращении цилиндры поочередно соединяются с полостями слива и нагнетания разделенными перегородкой золотника, расположенного в центре. Радиально-поршневой насос с эксцентричным валом. Конструктивно поршневая группа насоса установлена в статоре насоса. Ось вращения вала и ось неподвижного статора совпадают, но на валу имеется кулачок, который смещен на величину е относительно центра вращения вала. При вращении вала, кулачок заставляет поршни совершать поступательное движение. Величина хода составит 2e. Насос данной конструкции имеет клапанное распределение. При вращении вала поршни выдвигаясь из цилиндров наполняются жидкостью через клапана всасывания. Нагнетание жидкости происходит через клапана нагнетания при вхождении поршней в цилиндры. Данная конструкция редко используется как насосная и намного чаще используется в гидромоторах 51. Центробежный и струйный насосы: устройства, принципы действия, напорные характеристики. Пожалуй, среди всех гидравлических машин струйные насосы можно назвать самыми простыми по конструктивному исполнению. Они не имеют движущихся деталей, которые подвержены износу, просты в эксплуатации и ремонте. Струйные насосы относят к классу гидравлических аппаратов. Упрощенно схему работы струйного насоса можно объяснить так. Жидкость, пар, или газ под большим давлением подается по трубе, имеющей сопло, в подводящую камеру. Из-за сужения сопла жидкость обладает большей скоростью, следовательно, и кинетической энергией. В подводящей камере давление падает ниже атмосферного, и из питающего трубопровода, соединенного с этой камерой, происходит всасывание. Обе жидкости попадают в следующую камеру, где смешиваются и обмениваются кинетической энергией. Затем перемешавшееся вещество попадает в диффузор насоса, где теряет часть давления, а оттуда - в напорный трубопровод или сборный резервуар. В зависимости от назначения рабочая и перекачиваемая среда может быть одной и той же (например, в водоструйных насосах), или различной. Струйные насосы относят к т.н. "динамическим насосам". Главным недостатком таких насосов является низкий коэффициент полезного действия - до 30%. Примечателен тот факт, что до применения электродвигателей в качестве источника механической энергии, т.е. вплоть до 19-го века, струйные насосы широко применялись как генераторы гидравлической энергии. Струйные насосы почти никогда не соединяют параллельно - чаще последовательно. Выпускаются насосы с изменяемым соплом, что позволяет изменять характеристики в заданных заводом-изготовителем пределах. Иногда струйные аппараты применяют как вспомогательное оборудование для откачки воздуха в центробежных насосах перед их пуском. Одним из параметров, характеризующим струйные насосы, является коэффициент подсоса, или безразмерный расход. Определяется он как отношение расхода перекачиваемой жидкости к расходу рабочей. Несмотря на кажущуюся простоту и низкий КПД, струйные насосы незаменимы во многих случаях, например, когда необходимо произвести откачку жидкости из каких-либо резервуаров, а применить насосы другой конструкции не представляется возможным. Широкое применение струйные аппараты получили в пищевой промышленности, где одновременно с функцией перекачивания жидкостей ими выполняется функция смешения различных сред. Струйные насосы легко монтируются в систему трубопроводов, они малогабаритны и иногда используются на стороне высокого давления как дополнительные насосы. Примером такого применения могут служить канализационные насосные станции, в которых струйные аппараты используют для откачки жидкости из пескоуловителей. Еще одним из ярких примеров применения таких аппаратов могут служить системы пожаротушения, в которых подаваемая вода или раствор огнегасящий раствор используется как рабочая жидкость, в то время, как перекачиваемая отбирается из отдельного пожарного резервуара, чаще - пожарного водоема. Струйные аппараты иногда применяют с резервуаром высокого давления, в котором содержится рабочая среда. В последнее время струйные насосы рассматривают как часть т.н. "тепловых насосов". Замечено, что расширение пара в сопле сопровождается понижением температуры и, наоборот - при подаче среды под большим давлением в сужающийся диффузор последний подвержен нагреванию. Благодаря такому свойству насосы совместно с компрессорами нашли применение в системах кондиционирования и отопления. Date: 2016-06-06; view: 1394; Нарушение авторских прав |