Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Показатели размера и интенсивности вариации
Для характеристики размера вариации в статистике применяются абсолютные показатели вариации: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение и дисперсия. Размах вариации (размах колебаний) представляет собой разность между максимальным и минимальными значениями признака в совокупности: Для группировок с открытыми первым и последним интервалами, когда неизвестны реальные минимальное и максимальное значения признака совокупности, расчет размаха вариации некорректен. Размах вариации зависит от величины только крайних значений признаков. Более точно характеризуют вариацию признака показатели, основанные на учете колеблемости всех значений признака, — среднее линейное отклонение (d) и среднее квадратическое отклонение (σ). Для сгруппированных данных они рассчитываются по формулам: , где — значение признака в i-й группе (для интервальных вариационных рядов — середина i-го интервала); — средняя величина признака в совокупности; — частота (частость) i-го интервала. Квадрат среднего квадратического отклонения называется дисперсией(): Рассчитать дисперсию можно также по преобразованной формуле: где — средний квадрат значений признака в совокупности: ; — квадрат среднего значения признака в совокупности. При расчете дисперсии по этой формуле исключается дополнительная процедура расчета отклонений индивидуальных значений признака от его средней величины, за счет этого уменьшается ошибка, связанная с округлением значений промежуточных вычислений. Размах вариации, среднее линейное отклонение и среднее квадратическое отклонение являются величинами именованными, то есть имеют ту же единицу измерения, что и изучаемый признак. Дисперсия единицы измерения не имеет. Соотношение зависит от наличия в совокупности резких отклонений и может служить индикатором «засоренности» совокупности нетипичными, выделяющимися из основной массы единицами. Для нормального распределения это соотношение равно 1,25. Для оценки интенсивности вариации, а также для сравнения ее величины в разных совокупностях или по разным признакам используют относительные показатели вариации, которые рассчитываются как отношение абсолютных показателей вариации к средней величине признака: относительный размах вариации (коэффициент осцилляции), относительное линейное отклонение и др. Наиболее часто на практике применяют коэффициент вариации ( ), который представляет собой относительное квадратическое отклонение: По величине коэффициента вариации можно судить об интенсивности вариации признака, а следовательно, и об однородности состава изучаемой совокупности. Чем больше величина коэффициента вариации, тем больше разброс значений признака вокруг средней, тем больше неоднородность совокупности. Существует шкала определения степени однородности совокупности в зависимости от значений коэффициента вариации.
Отметим, что приведенная выше шкала оценки однородности совокупности весьма условна. Вопрос о степени интенсивности вариации должен решаться для каждого изучаемого признака индивидуально исходя из сравнения наблюдаемой вариации с некоторой ее обычной интенсивностью, принимаемой за норму. Вопросы для самоконтроля 1. Что называется вариацией? 2. Какие этапы предполагает статистический анализ вариаций? 3. Какие основные элементы можно выделить в составе любого вариационного ряда? 4. Чем отличаются частости от частот? 5. Что такое гистограмма? 6. Как строится полигон распределения для графического изображения интервального вариационного ряда?
а) в симметричном распределении; б) при левосторонней асимметрии; в) при правосторонней асимметрии? Date: 2016-05-25; view: 936; Нарушение авторских прав |