![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Метод выделения квадратов (Лагранжа)
Базис Теорема 4.3 Лагранжа. Для любой эрмитовой функции существует канонический базис. Доказательство проведём индукцией по рангу r матрицы эрмитовой формы F. Если r =0, то матрица нулевая, утверждение очевидно. Допустим, что теорема верна для r -1. Докажем ее истинность для r. Рассмотрим три случая а) б) в)
Базис эрмитовой билинейной функции f (x,y) называется нормальным, если матрица билинейной функции в этом базисе имеет диагональный вид, и ее главная диагональ равна (1,..,1,-1,..,-1,0..,0). Для отыскания матрицы перехода можно поступать следующим образом. Припишем к матрице F единичную матрицу справа. Затем будем производить элементарные преобразования со строками расширенной матрицы и столбцами матрицы F. Причем, если к строке k прибавим строку j, умноженную на число Следствие 4.5 Для эрмитовой формы существует нормальный базис если поле R или C. Доказательство. Построим канонический базис. Далее, если Следствие 4.6 Если все угловые миноры матрицы F отличны от нуля, то существует верхняя треугольная матрица Q, которая приводит F к диагональному виду. Доказательство проведем индукцией по рангу F. По теореме Лагранжа существует матрица Q, приводящая F к диагональному виду. Докажем, что она верхняя треугольная матрица. Обозначим через верхняя треугольная матрица Q’, приводящая матрицу Date: 2016-06-08; view: 547; Нарушение авторских прав |