Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Тема 9. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ





Корреляционно-регрессионный анализ заключается в определении аналитического выражения и степени тесноты связи между различными социально-экономическими явлениями и процессами или их признаками.

Признаки, обусловливающие изменение других, связанных с ними признаков, называют факторными и обозначают х. Признаки, изменяющиеся под воздействием факторных признаков, называют результативными и обозначают .

Связи между явлениями и их признаками классифицируются по:

аналитическому выражению (линейная связь и нелинейная связь);

– направлению (прямая связь и обратная связь);

степени тесноты (связь отсутствует, слабая, умеренная, сильная).

Линейная связь выражается уравнением прямой

,

где и – параметры линейной функции в уравнении связи, выражающей зависимость у от х.

Степень тесноты связи между различными явлениями определяют с помощью эмпирического корреляционного отношения () ,

где – дисперсия в ряду результативного признака под влиянием фактора х, т. е. рассчитанных по уравнению регрессии;

– дисперсия в ряду фактических значений результативного признака.

Если , т. е. = 1, то существует полная зависимость уx от х. Если = 0, то вариация факторного признака не влияет на вариацию результативного признака.

В случае линейной зависимости между двумя признаками степень тесноты связи между ними можно определить также с помощью линейного коэффициента корреляции по формулам

r = и r = ,

где – параметр линейной функции в уравнении связи, выражающей зависимость у от х;

и – среднеквадратическое отклонение в рядах х и у, соответственно;

– средняя величина факторного признака;

– средняя величина результативного признака;

– средняя величина произведений факторного и результативного признаков.

Коэффициент регрессии показывает, на сколько единиц изменяются значения результативного признака при изменении факторного признака на единицу. В случае прямой связи между признаками линейный коэффициент корреляции принимает положительные значения, а в случае обратной связи – отрицательные.

По величине линейного коэффициента корреляции судят о степени тесноты связи между признаками.

Величина коэффициента корреляции по модулю Теснота связи
От 0 до ± 0,3 практически отсутствует
От ± 0,3 до ± 0,5 слабая
От ± 0,5 до ± 0,7 умеренная
От ± 0,7 до ± 1,0 сильная

Графически связь между двумя количественными признаками изучают с помощью поля корреляции.

Пример 1. Приводятся данные за 2004 г. по отдельным отраслям промышленности в целом по РФ:

Отрасль промышленности Среднегодовая численность персонала, тыс. чел. Объем промышленной продукции, млрд. руб. Среднемесячная номинальная заработная плата, тыс. руб.
Электроэнергетика     10,96
Топливная   1 996 19,35
Черная металлургия   1 126 9,35
Цветная металлургия       13,45
Машиностроение 3 180 1 748 6,68

Составить уравнение линейной функции, выражающей зависимость среднемесячной заработной платы от уровня производительности труда, и измерить тесноту связи между этими показателями. Полученную связь изучить графически.

Решение. Все предварительные расчеты представим в таблице. Факторный признак – уровень производительности труда, рассчитанная путем деления объема промышленной продукции на среднегодовую численность персонала (графа 2), результативный признак – размер средней месячной номинальной заработной платы (графа 3).

Отрасль промышлен-ности x y  
             
Электро-энергетика 1,127 10,96 1,2701 12,3519 120,1216 10,405
Топливная 2,630 19,35 6,9169 50,8906 374,4225 18,402
Черная металлургия 1,632 9,35 2,6634 15,2592 87,4225 13,092
Цветная металлургия 1,155 13,45 1,3340 15,5348 180,9025 10,554
Машино-строение 0,550 6,68 0,3025 3,6740 44,6224 7,336
Итого 7,094 59,79 12,4869 97,7159 807,4915 59,789

Вычисляем все необходимые показатели.

1,4188;

11,958;

19,54318;

2,49738;

61,64983;

0,696;

4,319.

 

Вычислим линейный коэффициент корреляции

r = = = 0,857.

Для определения параметров линейной функции и составляют систему уравнений

Подставим в систему уравнений все вычисленные показатели

Решая эту систему уравнений, получаем, что = 4,40930 и = 5,32048.


Уравнение имеет вид: .

В графе 7 с помощью полученной линейной функции рассчитаем теоретические значения результативного признака.

Вычислим линейный коэффициент корреляции

r = = = 0,857.

Зависимость средней месячной номинальной заработной платы от уровня производительности труда в представленных отраслях промышленности сильная ( близок к 1) и прямая ( больше нуля), т. е. с увеличением производительности труда увеличивается среднемесячная номинальная заработная плата. Построим поле корреляции.

 

Рис. 8. Поле корреляции

 

Поскольку наблюдается сосредоточение точек на графике, то существует сильная связь между уровнем производительности труда и среднемесячной номинальной заработной платой.

Оценку существенности корреляционной связи производят с помощью F -критерия Фишера и t -критерия Стьюдента.

Коэффициент эластичности ( ) показывает, на сколько процентов изменяется результативный признак при изменении факторного признака на 1% и рассчитывается по формуле = ,

где – среднее значение факторного признака;

– среднее значение результативного признака;

– параметр линейной функции, выражающей зависимость у от х.

Если с возрастанием факторного признака происходит ускоренное возрастание или убывание результативного признака, то корреляционная зависимость может быть выражена параболой второго порядка

.


Система уравнений для расчета параметров параболы второго порядка принимает вид

При наличии линейной зависимости результативного признака от двух факторных признаков вычисляют множественный коэффициент корреляции

R = ,

где r – парные коэффициенты корреляции между признаками.

Множественный коэффициент корреляции изменяется в пределах от 0 до + 1, и его приближение к единице свидетельствует о сильной зависимости между рассматриваемыми признаками.







Date: 2016-01-20; view: 463; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.014 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию