Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Графоаналитический метод определения прогиба балки методом Верещагина
В 1925 г. А. Н. Верещагин предложил простой графоаналитический прием вычисления интеграла Мора в случаях, когда эпюра Мz´ (или Мz) ограничена прямыми линиями. При постоянной жесткости по длине балки EIz для определения прогиба энергетическим методом необходимо вычислять интеграл вида:
Допустим, что эпюры изгибающих моментов аналитически выражаются функциями Мz=f1(х), М’z´ = f2(х), причем одна из них, например, f1(х) произвольная, а другая f2(х) линейная функция и может быть записана в виде f2(х) = kх+b. Пусть графики этих функций имеют вид представленный на рис. 3.86.
Рисунок 3.86 В соответствии с принятыми обозначениями можно записать:
Первый интеграл представляет собой статический момент относительно оси x площади эпюры ограниченной кривой Mz, т.е.
ω – площадь, ограниченная кривой Mz, хc - координата центра тяжести фигуры ограниченной кривой Mz относительно оси х. Второй интеграл представляет собой площадь, ограниченную кривой Mz, которую обозначили ω. Следовательно:
Итак,
Таким образом, искомый интеграл
Таким образом, для вычисления прогибов по способу Верещагина необходимо: 1) построить эпюру изгибающих моментов от заданных нагрузок Mz (основная эпюра); 2) снять внешнюю нагрузку (но сохранить опоры) и приложить в том сечении, в котором определяется перемещение (угол поворота) единичную силу (единичный момент) в направлении искомого.перемещения (угла поворота); 3) построить эпюру изгибающих моментов от единичной нагрузки Мz ´(единичная эпюра); 4) разбить эпюры на участки, в пределах которых отсутствуют изломы эпюр, и для каждого участка вычислить площадь криволинейной эпюры ωi и ординаты эпюр ограниченных линейной функцией под центрами тяжести криволинейных эпюр уci. 5) составить произведения ωi уci и просуммировать:
Встречающиеся на практике эпюры изгибающих моментов разбивают на простейшие фигуры: прямоугольник, треугольник и параболический треугольник. Площади этих фигур и координаты центров тяжести приведены в таблице 3.3. Таблица 3.3
Пример 3.16 Определить прогиб сечения A и угол поворота сечения В консольно закрепленной балки (рис. 3.87а). Жесткость EIz по длине балки принять постоянной. Решение. Построим эпюры изгибающих моментов от заданных нагрузок Mz (рис. 3.87б), а затем от единичной силы Mz`, приложенной к концу консоли в сечении А (рис. 3.87д) и от единичной пары Mz`, приложенной в сечении В (рис. 3.87ж).
Рисунок 3.87 Для определения прогиба точки А надо перемножить эпюры от заданной нагрузки Mz (рис.3.87б) и единичной силы Mz` (рис. 3.87д). Разобьем основную эпюру на параболический треугольник, прямоугольник и треугольник (трапецию разбиваем на прямоугольник и треугольник потому, что заранее неизвестно, где находится ее центр тяжести) и вычислим ωi, а затем по эпюре от единичной силы найдем координаты yci. В результате получим:
Определяя угол поворота сечения В, перемножаем эпюры от заданных нагрузок Mz (рис. 3.87б) и единичного момента Mz` (рис. 3.87ж) только на правом участке (на левом это произведение равно нулю). Обе эпюры на этом участке линейные, и поэтому безразлично, с какой из них брать площадь. Если площадь взять с эпюры от заданных нагрузок, то:
Если же площадь взять с единичной эпюры, то
Результаты перемножения, как и следовало, ожидать одинаковы. Знак минус показывает, что сечение В поворачивается в направлении, противоположном направлению единичного момента. Date: 2015-12-13; view: 728; Нарушение авторских прав |