Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Фазовые характеристики
Рис. Типовая ФЧХ и фазовая задержка фильтра Чебышёва I рода 10-го порядка. Фазовые характеристики фильтра Чебышёва I рода — фазо-частотная характеристика (ФЧХ) и фазовая задержка — представлены на рисунке. Фазо-частотная характеристика показывает распределение по частоте смещения фазы выходного сигнала относительно входного. Фазовая задержка определяется как частное от деления фазо-частотной характеристики на частоту и характеризует распределение по частоте временного смещения выходного сигнала относительно входного.
Временны́е характеристики
Рис. Типовые временные характеристики фильтра Чебышёва I рода 10-го порядка. Временные характеристики фильтра Чебышёва I рода — импульсная переходная функция и переходная функция — представлены на рисунке. Импульсная переходная функция представляет собой реакцию фильтра на входной сигнал в виде дельта-функции Дирака, а переходная функция — реакцию на входное воздействие в виде единичной функции Хевисайда. Фильтр Чебышёва II рода (инверсный фильтр Чебышёва) используется реже, чем фильтр Чебышёва I рода ввиду менее крутого спада амплитудной характеристики, что приводит к увеличению числа компонентов. У него отсутствуют пульсации в полосе пропускания, однако присутствуют в полосе подавления. Амплитудная характеристика такого фильтра задаётся следующим выражением:
В полосе подавления полиномы Чебышёва принимают значения от 0 до 1, из-за чего амплитудная характеристика такого фильтра принимает значения от нуля до
минимальной частотой, при которой достигается этот максимум является частота среза ω0. Параметр
Для затухания на частотах полосы подавления в 5 дБ:
Логарифм модуля амплитудной характеристики фильтра Чебышёва II рода восьмого порядка на комплексной плоскости (s = σ + j ω) с Приняв частоту среза равной единице, получим выражение для полюсов (ω pm) фильтра Чебышёва:
Полюса фильтра Чебышёва II рода представляют собой «инверсию» полюсов фильтра Чебышёва I рода:
где Нули (ω zm) фильтра Чебышёва II рода определяются из следующего соотношения::
Нули фильтра Чебышёва II рода являются «инверсией» нулей многочленов Чебышёва:
Передаточная функция задаётся при помощи полюсов в левой полуплоскости комлексной плоскости, её нули совпадают с нулями модуля амплитудной характеристики, с тем лишь отличием, что их порядок равен 1. Date: 2016-02-19; view: 686; Нарушение авторских прав |