Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






В 5. Модели линейного программирования





Методы оптимальных решений

Методы линейного программирования

Постановка задачи линейного программирования и свойства ее решений

Графический способ решения ЗЛП

Симплекс – метод решения задач линейного

Программирования

Симплексные таблицы

Транспортная задача

Математическая постановка транспортной задачи

Нахождение первоначального базисного распределения поставок

Метод потенциалов

Динамическое программирование

Общая постановка задачи динамического программирования

Принцип оптимальности и рекуррентные соотношения Беллмана

Задача о распределении средств между предприятиями

Общая схема применения метода динамического программирования

В 5. Модели линейного программирования

 

Многие задачи, с которыми приходится иметь дело в повседневной практике, являются многовариантными. К таким задачам относятся:

• задача об оптимальном использовании ограниченных ресурсов (сырьевых, трудовых, временных);

• задача сетевого планирования и управления;

• задачи массового обслуживания;

• задачи составления расписания (календарного планирования);

• задачи выбора маршрута и другие.

Среди множества возможных вариантов в условиях рыночных отношений приходится отыскивать наилучшие решения в некотором смысле при ограничениях, налагаемых на природные, экономические и технологические возможности. Такие решения называются оптимальными, а задачи и соответствующие им модели позволяющие найти эти решения - оптимизационными (оптимальными). Математическим аппаратом задач оптимального планирования является математическое программирование.

Математическое программирование — область математики, разрабатывающая теорию и численные методы решения многомерных экстремальных задач с ограничениями, т. е. задач на экстремум функции многих переменных с ограничениями на область изменения этих переменных.
Функцию, экстремальное значение которой нужно найти в условиях экономических возможностей, называют целевой, показателем эффективности или критерием оптимальности. Экономические возможности формализуются в виде системы ограничений. Все это составляет математическую модель. Математическая модель задачи — это отражение оригинала в виде функций, уравнений, неравенств, цифр и т. д. Модель задачи математического программирования включает:
1) совокупность неизвестных величин, действуя на которые, систему можно совершенствовать. Их называют планом задачи (вектором управления, решением, управлением, стратегией, поведением и др.);
2) целевую функцию (функцию цели, показатель эффективности, критерий оптимальности, функционал задачи и др.). Целевая функция позволяет выбирать наилучший вариант - из множества возможных. Наилучший вариант доставляет целевой функции экстремальное значение. Это может быть прибыль, объем выпуска или реализации, затраты производства, издержки обращения, уровень обслуживания или дефицитности, число комплектов, отходы и т. д.;
Эти условия следуют из ограниченности ресурсов, которыми располагает общество в любой момент времени, из необходимости удовлетворения насущных потребностей, из условий производственных и технологических процессов. Ограниченными являются не только материальные, финансовые и трудовые ресурсы. Таковыми могут быть возможности технического, технологического и вообще научного потенциала. Нередко потребности превышают возможности их удовлетворения. Математически ограничения выражаются в виде уравнений и неравенств. Их совокупность образует область допустимых решений (область экономических возможностей). План, удовлетворяющий системе ограничений задачи, называется допустимым. Допустимый план, доставляющий функции цели экстремальное значение, называется оптимальным. Оптимальное решение, вообще говоря, не обязательно единственно, возможны случаи, когда оно не существует, имеется конечное или бесчисленное множество оптимальных решений.
Оптимизационная задача, в которой целевая функция и неравенства (уравнения), входящие в систему ограничений являются линейными функциями, называется задачей линейного программирования, а соответствующая ей экономико-математическая модель – оптимизационной моделью линейного программирования

Методы и модели линейного программирования широко применяются при оптимизации процессов во всех отраслях народного хозяйства: при разработке производственной программы предприятия, распределении ее по исполнителям, при размещении заказов между исполнителями и по временным интервалам, при определении наилучшего ассортимента выпускаемой продукции, в задачах перспективного, текущего и оперативного планирования и управления; при планировании грузопотоков, определении плана товарооборота и его распределении; в задачах развития и размещения производительных сил, баз и складов систем обращения материальных ресурсов и т. д. Особенно широкое применение методы и модели линейного программирования получили при решении задач экономии ресурсов (выбор ресурсосберегающих технологий, составление смесей, раскрой материалов), производственно-транспортных и других задач.
Начало линейному программированию было положено в 1939 г. советским математиком-экономистом Л. В. Канторовичем в работе «Математические методы организации и планирования производства». Появление этой работы открыло новый этап в применении математики в экономике. Спустя десять лет американский математик Дж. Данциг разработал эффективный метод решения данного класса задач — симплекс-метод. Общая идея симплексного метода (метода последовательного улучшения плана) для решения ЗЛП состоит в следующем:
1) умение находить начальный опорный план;
2) наличие признака оптимальности опорного плана;
3) умение переходить к нехудшему опорному плану.


 







Date: 2016-02-19; view: 388; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию