Главная Случайная страница



Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Положения генетического кода





 
 


1. Триплетность. В полипептидах всего 4 разных азотистых основания, аминокислот не менее 20, следовательно – один мононуклеотид не может нести информацию об одной аминокислоте; два (42=16) – тоже, и только количество тринуклеотидов (43=64) может соответствовать числу аминокислот. Причем 3 из них (УАА, УАГ, УГА) бессмысленные (стоп-сигналы) – не несут сведения ни о какой аминокислоте, а 61 – смысловой триплет.

2. Вырожденность. Информация об одной аминокислоте может быть заложена в 1-3, до 5 различных кодонах.

3. Однозначность. С одного кодона можно считать сведения только об одной аминокислоте.

4. Однонаправленность. Считывание производится только в одном направлении с 5'-конца к 3'-концу.

5. Кодне перекрывающийся – один и тот же мононуклеотид не может входить в состав двух разных, рядом лежащих кодонов.

6. Код «без запятых» – два рядом расположенных триплета не отделяются друг от друга никакими знаками препинания.

7. Код не универсален,а альтернативен – триплеты ядерной ДНК, несущие сведения об определенных аминокислотах могут отличаться от соответствующих кодонов м-ДНК (см. «Патохимию наследственных болезней», с.18).

Обязательными участниками трансляции служат иРНК, рибосомы, тРНК и аминокислоты. Последние, чтобы стать настоящими субстратами, должны не только активироваться, но и связаться с той тРНК, антикодон которой несет информацию о ней.

Поэтому в клетке присутствуют специальные ферменты, осуществляющие этот процесс и каждый из которых обладает суперспецифичностью, механизм которой называют вторым генетическим кодом. Проверка правильности образования комплекса осуществляется на обеих стадиях, и если выясняется ошибочность, тут же происходит распад образовавшейся структуры:

Е + а/к + АТФ ↔ Е▪аминоацил~АМФ + ФФ

Е▪аминоацил~АМФ + тРНК ↔ Е + АМФ + аминоацил~тРНК,

где Е – фермент (аминоацил-тРНК-синтетаза), а/к – аминокислота.

Подготовленные таким способом аминокислоты подтягиваются к рибосомам, куда подходит и синтезированная в ядре иРНК. Когда рибосома не транслирует, она находится в диссоциированном состоянии, т.е. распадается на две неравные субчастицы: у эукариот их обозначают:



80S → 60S + 40S.

(S-единицы Svedberge, в них рассчитывается скорость седиментации – осаждения при ультрацентрифугировании)

Малая субъединица (40S) имеет два специальных локуса: аминоацильный (А) и пептидильный (Р). Инициация (Схема 4.4.1) начинается с того, что к этой структуре подходит иРНК и своим кэп-участком так крепится к ней, что ее первый оказывается на Р-, а второй на А-локусе. Этот процесс осуществляется при обязательном участии факторов инициации (iF-1 – iF-3).

У иРНК первым (инициирующим) кодоном всегда является триплет, несущий информацию о метионине (АУГ), отсюда из всех аминоацил-тРНК к пептидильному участку может подойти с последующим образованием водородных связей с этим кодоном только та, антикодон которой ему комплементарен. В итоге образуется комплекс: инициирующий тринуклеотид иРНК - аминоацил~тРНК – малая субъединица. Инициация завершается тем, что к нему присоединяется 60S субъединица, предотвращающая обратимость процесса.

Затем в контакт со 2-м кодоном иРНК, сидящем на А-site, вступает та тРНК, антикодон которой комплементарен ему. Начинается элонгация, за которую отвечает энзим большой субъединицы – пептидилтрансфераза, основу которой составляет рРНК (поэтому-то он и называют - рибозим). С ее помощью α-аминогруппа новой аминоацил-тРНК в А-участке осуществляет нуклеофильную атаку этерифицированной карбоксильной группы первой аминоацил-тРНК, занимающей Р-site, образуется дипептид, связанный с тРНК2 и сидящий на аминоацильном локусе. Свободная тРНК1 покидает Р-участок.

Синтез:

Схема 4.4.1. Схема синтеза и созревания полипептида

 

 

Затем осуществляется транслокация, которая происходит с помощью фактора элонгации 2 (ЕF-2, транслоказа) и энергии гидролиза ГТФ, в результате происходит перемещение нити иРНК таким образом, что ее второй кодон оказывается на пептидильном участке вместе с дипептидом-тРНК, на А-site – третий триплет иРНК, способный к взаимодействию с соответствующей аминоацил-тРНК.

После многих подобных циклов элонгации и транслокации, в результате которых синтезируется полипептидная цепь, на А-локус садится нонсенс (терминирующий) кодон иРНК (УАА, УАГ или УГА), что останавливает ее рост. С помощью R-факторов (факторов терминации) гидролизуется связь между полипептидом и тРНК, занимающей Р-участок, а рибосома диссоциирует на свои субъединицы (Схема 4.4.1).

В дальнейшем начинается созревание полипептидных нитей. В клетках эукариот многие белки синтезируются в виде предшественников, созревание которых представляет частичный гидролиз. Например:

 

Некоторые пробелки подвергаются химической модификации: пролины проколлагена гидроксилируются, что обеспечивает зрелость коллагена. Известны и другие варианты посттрансляционных модификаций (гликозилирование, фосфорилирование, ацетилирование и т.д.), когда образуются различные простые и сложные протеины (приложение, Табл.11).



Параллельно происходит усложнение вторичной структуры, формирование (фолдинг) пространственной укладки с помощью шаперонов – белков, отвечающих за правильный характер сворачивания полипептидных цепей; кроме того эти протеины помогают вновь синтезированным нитям еще в развернутом состоянии преодолевать мембраны и попадать из цитозоля в органоиды.

Если почему-то нарушается структурирование полипептидных цепей, то возникшие при этом белки не только могут выполнять свои функции, но и производят токсический эффект. Примером могут служить нейродегенеративные заболевания, в основе которых лежат преобразования α-спиралей прионов – белков нервной ткани в β-складчатую структуру, что придает данным протеинам инфекционные свойства. При этом высока вероятность особой роли в таких процессах соответствующих шаперонов.

Пусковым механизмом подобных болезней является неадекватное количество инфекционной формы приона. Это может быть вызвано:

а) мутацией его гена, что обычно носит спорадический характер (болезнь Крейтцфельдта-Якоба, синдром Герстманна-Штреусслера-Шейнкера);

б) проникновением инфекционной частицы извне алиментарным (ритуальный каннибализм провоцирует заражение болезнью Куру) или ятрогенным (нейрохирургические манипуляции, пересадка роговицы и других тканевых материалов от человека к человеку, терапия белковыми гормонами гипофиза) путями.

Поэтому прионные болезни и наследственные, и инфекционные одновременно.

 








Date: 2015-05-22; view: 376; Нарушение авторских прав



mydocx.ru - 2015-2021 year. (0.017 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию