![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
ЛЕКЦИЯ №4
Уравнение Шредингера Как известно, классическая механика родилась после формулирования уравнений динамики Ньютона, теория относительности приняла законченную форму после построения А.Эйнштейном общей теории относительности, описывающей динамику релятивистских частиц. Так и квантовая механика родилась после формулирования Шредингером в 1926 г. динамического уравнения для нерелятивистских квантовых частиц. Часто уравнение Шредингера называют пятым постулатом квантовой механики, но все-таки оно не было угадано, и для его формулировки существуют определенные физические основания. Пусть известно значение волновой функции y(х, t) в момент времени t =0, т.е. y (х,0 )~. Так как волновая функция полностью характеризует поведение частицы, то она должна определять и ее поведение в любые другие моменты времени, т.е. из волновой функции y (х,0 ) должна однозначно определяться функция y (х, t). Рассмотрим функцию y (х,D t) в момент времени D t, бесконечно мало отличающийся от нуля. Тогда Согласно сказанному, коэффициент при D t должен определяться из y (х,0):
где
где введен оператор
являющийся результатом квантования функции Гамильтона и для свободного движения частицы совпадающего с оператором кинетической энергии будет иметь вид:
Таким образом, для свободного движения оператор смещения во времени имеет вид:
В квантовой механике постулируется, что оператор смещения во времени всегда (для любого движения) выражается через гамильтониан по формуле (4.3). Тогда окончательно уравнение для волновой функции записывается следующим образом:
Это уравнение называется уравнением Шредингера. В отсутствие переменных внешних полей гамильтониан Date: 2015-05-19; view: 358; Нарушение авторских прав |