Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Постулаты квантовой механики. Часто выделяют 4 постулата:
Часто выделяют 4 постулата: 1) Постулат о волновой функции. Каждой системе (состоянию кв.-мех. системы) может быть поставлена в соответствие волновая функция динамических переменных (из полного набора) и времени, полностью описывающей состояние системы. Динамические переменные одновременно измеримы. - n – мерный вектор динамических переменных; функция динамических переменных и времени - описывает эволюцию квантово-механических систем. классической механике задание 2n динамических переменных полностью определяет состояние системы через функцию Гамильтона. В квантово-механической системе описывается эволюция системы через - функцию от n динамических переменных. 2) О связи физических величин и объектов математики (операторов). Каждой физической величине (наблюдаемой) ставится в соответствие оператор: 3) Связь между результатами измерения физической величины и значением оператора (т. е. решением математических задач) Пусть - значение физической величины , которое получено в результате измерения системы, находящейся в i -том квантовом состоянии. является одним из собственных значений оператора . Это задача на собственные функции и собственные значения. Задача определяет собственные значения , соответствующие и определяет собственные функции , соответствующие собственным значениям . Если собственные значения образуют дискретное множество, то говорят о дискретном спектре. Если собственные значения образуют непрерывное множество, то спектр непрерывный. 4) Определение среднего значения физической величины Здесь введено понятие скалярного произведения для функций из гильбертова пространства. Гильбертово пространство – это пространство квадратично интегрируемых функций (нормируемых функций). Если - квадратично интегрируемые функции, тогда: Это определение для - декартовых переменных. Для перехода к другой системе координат вводится якобиан перехода. Значок «*» означает комплексное сопряжение. Это аналог длины в векторном пространстве.
Date: 2015-05-18; view: 638; Нарушение авторских прав |