![]() Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
![]() Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
![]() |
Интерференция света, интенсивность при суперпозиции двух монохроматических волн
Интерференция волн — взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве.[1] Сопровождается чередованием максимумов и минимумов (пучностей) интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн. Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них неортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера. При интерференции энергия волн перераспределяется в пространстве.[1] Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн. При наложении некогерентных волн средняя величина квадрата амплитуды результирующей волны равна сумме квадратов амплитуд накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий ее колебаний, обусловленных всеми некогерентными волнами в отдельности.
Электромагнитная волна называется монохроматической, если переменные поля меняются со временем по гармоническому закону. Для плоской монохроматической волны
Здесь Если ввести волновой вектор Последняя формула описывает волну, распространяющуюся в произвольном фиксированном направлении, которое задается единичным вектором Для плоской монохроматической линейно поляризованной волны окончательно имеем: В общем случае плоская монохроматическая волна (9.12) представляет собой суперпозицию двух линейно поляризованных волн:
Здесь векторы Пусть волна распространяется вдоль оси
Исключая из двух последних равенств время, найдем Последнее равенство показывает, что в плоскости Физическую величину, равную квадрату амплитуды электрического поля волны, принято называть интенсивностью: I = A 2. Несложные тригонометрические преобразования приводят к следующему выражению для интенсивности результирующего колебания в точке P:
где Δ = r 2 – r 1 – так называемая разность хода. Из этого выражения следует, что интерференционный максимум (светлая полоса) достигается в тех точках пространства, в которых Δ = m λ (m = 0, ±1, ±2,...). При этом I max = (a 1 + a 2)2 > I 1 + I 2. Интерференционный минимум (темная полоса) достигается при Δ = m λ + λ / 2. Минимальное значение интенсивности I min = (a 1 – a 2)2 < I 1 + I 2. На рис. 3.7.4 показано распределение интенсивности света в интерференционной картине в зависимости от разности хода Δ.
В частности, если I 1 = I 2 = I 0, т. е. интенсивности обеих интерферирующих волн одинаковы, выражение (*) приобретает вид: I = 2 I 0(1 + cos k Δ). В этом случае I max = 4 I 0, I min = 0. Date: 2015-05-18; view: 1422; Нарушение авторских прав |