Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Искусственная анизотропия





Двойное лучепреломление имеет место в естественных анизотропных средах. Существуют, однако, различные способы получения искусственной оптической анизотропии, т. е. сообщения оптической анизотропии естественно изотропным веществам.

Оптически изотропные вещества становятся оптически анизотропными под действием: 1) одностороннего сжатия или растяжения (кристаллы кубической системы, стекла и др.); 2) электрического поля (эффект Керра*; жидкости, аморфные тела, газы); 3) магнитного поля (жидкости, стекла, коллоиды). В перечисленных случаях вещество приобретает свойства одноосного кристалла, оптическая ось которого совпадает с направлением деформации, электрического или магнитного полей соответст­венно указанным выше воздействиям.

Мерой возникающей оптической анизотропии служит разность показателей прело­мления обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси:

(195.1)

где k 1, k 2, k 3 постоянные, характеризующие вещество,  — нормальное напряжение (см. § 21), Е и Н — соответственно напряженность электрического и магнитного полей.

Эффект Керра — оптическая анизотропия веществ под действием электрического поля — объясняется различной поляризуемостью молекул жидкости по разным направлениям. Это явление практически безынерционно, т. е. время перехода вещества из изотропного состояния в анизотропное при включении поля (и обратно) составляет приблизительно 10–10 с. Поэтому ячейка Керра служит идеальным световым затвором и применяется в быстропротекающих процессах.

Искусственная анизотропия под действием механических воздействий позволяет исследовать напряжения, возникающие в прозрачных телах. В данном случае о степени деформации отдельных участков изделия (например, остаточных деформаций в стекле при закалке) судят по распределению в нем окраски.

Основные понятия фотометрии

Раздел оптики, в котором рассматриваются методы измерения световой энергии, называется фотометрией.

С точки зрения фотометрии, свет – это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. Такое ощущение вызывает излучение с длинами волн от ~0,38 до ~0,78 мкм, причем самым ярким представляется излучение с длиной волны около 0,555 мкм (желто-зеленого цвета). Поскольку чувствительность глаза к разным длинам волн у людей неодинакова, в фотометрии принят ряд условностей.

Существуют два общих метода фотометрии:

1) визуальная фотометрия, в которой при выравнивании механическими или оптическими средствами яркости двух полей сравнения используется способность человеческого глаза ощущать различия в яркости;

2) физическая фотометрия, в которой для сравнения двух источников света используются различные приемники света иного рода – вакуумные фотоэлементы, полупроводниковые фотодиоды и т. д.

Величину энергии W, излучаемой телом за единицу времени t, называют мощностью излучения: .

Энергию, переносимую световой волной через площадку за единицу времени, называют потоком энергии через эту площадку.

Световым потоком Ф называют проходящую через данную поверхность S в единицу времени t световую энергию, оцениваемую по зрительному ощущению . поток излучения Фе, имеющий физический смысл средней мощности, переносимой электромагнитным излучением. Пространственное распределение Фе описывают энергетические фотометрические величины, производные от потока излучения по площади и (или) телесному углу.

Полный поток, идущий от L по всем направлениям, будет .

Поток есть основное понятие, необходимое для оценки количества энергии, проникающей в наши приборы. Знание потока существенно необходимо при расчете многих оптических устройств. Такой прием­ник, как, например, фотоэлемент, непосредственно реагирует на поток.

2. Сила света J. Величину потока, приходящегося на еди­ницу телесного угла, называют силой света. Если поток Ф посылается нашим источником равномерно по всем направлениям, то

(1.3) есть сила света, одинаковая для любого направления. В случае неравномерного потока величина Ф/4p представляет лишь среднюю силу света и называется средней сферической силой света.

Сила света по данному направлению определится соотношением

Освещенность Е. Освещенностью Е называется вели­чина потока, приходящегося на единицу поверхности: Освещенность площадки s (обозначения те же, что и на рис. 1) есть ,

Полученное выражение показывает, что освещенность, создавае­мая точечным источником обратно пропорциональна квадрату расстояния от источника до поверхности и прямо пропорциональна косинусу угла, составляемого направлением светового потока (осью узкого конуса, внутри которого распространяется поток) с нормалью к освещаемой поверхности. Это есть основной закон освещенности, создаваемой точечным источником (закон обратных квадратов).

ИЛИ (1.8)

Коэффициент Вi носит название яркости источника по направ­лению, определяемому углом i.

Светимость S.С понятием яркости тесно связано поня­тие светимости S, представляющей собой интегральную величину, т. е. суммарный поток, посылаемый единицей поверхности наружу по всем направлениям (внутрь телесного угла 2p). Таким образом,

Для характеристики светового поля можно ввести еще понятие интен­сивности светового потока. Под интенсивностью понимают величину светового потока, протекающего через единицу видимого сечения по направлению, определяемому углом i между направлением потока и нормалью к этому сечению, внутрь единичного телесного угла:

Date: 2015-05-18; view: 1206; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию