Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Классы функций. Замкнутые и незамкнутые классы. Получение констант и элементарных булевых функций из заданной системы функций
Определение. Функция называется линейной, если ее многочлен Жегалкина не содержит ни одной конъюнкции переменных.
Замкнутые классы функций.
Определение. Пусть дан класс функций B (т.е. конечное или бесконечное множество функций),объединенных по общему признаку. Замыканием этого класса (обозначение – [B]) будем называть множество всех суперпозиций функций из класса B. Класс B будем называть замкнутым, если его замыкание совпадает с ним самим.
B = [B]
Теорема 1 Класс всех линейных функций замкнут. Доказательство. Пусть L – класс линейных функций (так и будем обозначать в дальнейшем). L = {a0+a1x1+a2x2+…+anxn} Подставим вместо переменной x в одну из функций функцию y такого же вида. Получим L = [L].
Утверждение (теорема 2) Необходимое условие линейности. Если функция линейна и не равна некоторой постоянной, то на половине своих наборов она равна 1. Если в векторе значений функции число 0 и 1 различно, то функция обязательно нелинейна, а если число нулей совпадает с числом единиц, то эта функция может быть линейной, а может быть и нелинейной. В таком случае, чтобы это проверить, нужно выписать для нее многочлен Жегалкина.
Функция называется самодвойственной, если двойственная к ней функция является самой этой функцией. F* = F.
S – класс всех самодвойственных функций. Класс S является функционально замкнутым. Доказательство следует из принципа двойственности. У самодвойственной функции на противоположных наборах противоположны значения.
Функция называется монотонной, если из условия a £ b следует, что f(a) £ f(b). Теорема. Класс M монотонных функций замкнут. Свойство. У монотонных функций сокращенная ДНФ не содержит отрицаний переменных, то есть все простые импликанты не содержат отрицаний.
Другие замкнутые классы T0 – константа 0 (класс функций, обращающихся на нулевом векторе в 0). Т1 – константа 1 (класс функций, обращающихся на единичном векторе в 1)
Теорема Классы Т0 и Т1 функционально замкнуты.
Date: 2015-04-23; view: 1064; Нарушение авторских прав |