Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Вывод обобщенного дифференциального уравнения переноса
Из равенства (97) и комментариев к нему видно, что интенсивность процесса переноса, а значит, и количество перенесенного вещества dE должны зависеть от разности интенсиалов dΡ. Следовательно, в уравнении переноса в отличие от уравнения состояния экстенсор dE должен быть выражен через разность интенсиалов dP. Чтобы найти соответствующую функциональную зависимость, необходимо обратиться к третьему началу ОТ. Согласно третьему началу, имеет место однозначная связь между интенсиалами и экстенсорами (см. уравнение (52)). Отсюда прямо следует, что экстенсоры можно выразить через интенсиалы, для этого из каждой строчки уравнения (52) находится соответствующий экстенсор и подставляется в остальные строчки. В результате выполнения указанной процедуры получается совокупность следующих так называемых обращенных зависимостей: Ek = fk(Р1; Р2;...; Рn) (98) где k = 1, 2,..., n; fk - некие новые неизвестные функции. В обращенном уравнении (98) роль аргументов играют интенсиалы, а роль функций - экстенсоры. Однако отсюда вовсе не должно вытекать, что интенсиалы, подобно экстенсорам, являются первичными величинами и их можно именовать параметрами состояния. В действительности, как мы видели, первичность и вторичность тех или иных характеристик определяются из других соображений. По-прежнему для простоты ограничимся системой с двумя степенями свободы. В этом случае уравнение (98) приобретает вид (n = 2) E1 = f1(Р1; Р2) (99) E2 = f2(Р1; Р2) Путем дифференцирования находим dE1 = KP11dР1 + KP12dР2 (100) dE2 = KP21dР1 + KP22dР2 где KP11 = (¶Е1/¶Р1)Р2; KP22 = (¶Е2/¶Р2)Р1; (101) KP12 = (¶Е1/¶Р2)Р1; KP21 = (¶Е2/¶Р1)Р2. (102) Индекс, стоящий внизу скобки, указывает на интенсиал, который при дифференцировании сохраняется постоянным. В наиболее простом частном случае, когда n = 1, получаем Е = f(Р) (103) dЕ = КdР (104) где К = 1/А = dЕ/dР (105) Выражения (100)-(102) несколько напоминают уравнения состояния (54)-(56). Вместе с тем между ними имеется и существенная разница. Прежде всего необходимо отметить, что в новое уравнение (100) входят емкости Кр, найденные при постоянных значениях интенсиалов; это обстоятельство подчеркивается индексом Р. В уравнениях состояния, где емкости К и структуры А определяются при постоянных экстенсорах, соответствующий индекс Ε при них опущен. Как и прежде, емкости Кр обратны характеристикам Ар, которые тоже берутся при постоянных Р, то есть Ар = 1/Кр (106) Характеристики Кр и Ар в принципе отличны от характеристик К и А. Неучет этого обстоятельства может привести к серьезным ошибкам, особенно если система находится вблизи нуля интенсиалов. Разницы между указанными характеристиками нет только в том гипотетическом частном случае, когда система располагает всего одной степенью свободы (см. формулы (60) и (105)). Экстенсоры dE в уравнениях (54) и (100) имеют один и тот же смысл - они характеризуют количества переданных веществ. Что касается разностей dP, то в первом случае они определяют изменение состояния системы, а во втором - те перепады или напоры, которые служат причиной переноса веществ. Естественно поэтому, что разности dP в уравнениях (54) и (100) не равны между собой. Дифференциальное уравнение (100) связывает количества перенесенных веществ с имеющимися разностями интенсиалов, следовательно, его допустимо трактовать как некое обобщенное дифференциальное уравнение переноса. Согласно этому уравнению, количества перенесенных веществ dE пропорциональны разностям интенсиалов dP, причем коэффициентами пропорциональности служат емкости Кр, найденные при постоянных значениях интенсиалов. Эти емкости именуются обобщенными проводимостями [17, с.37; 18, с.142; 21, с.64]. Из выражений (100), (101) и (102) видно, что существуют два типа обобщенных проводимостей: основные, индексы которых составлены из одинаковых цифр, и перекрестные, их индексы содержат разные цифры. В частном случае из равенств (100) и (104) могут быть получены все известные уравнения переноса [ТРП, стр.139-141].
3. Термодинамический поток и «сила».
Обобщенное дифференциальное уравнение переноса (100) весьма примечательно, ибо оно в самом общем виде описывает процесс распространения любого вещества, в том числе метрического и хронального, которые имеют отношение к пространству и времени. Но вопрос о пространстве и времени требует особого, более глубокого рассмотрения. Поэтому в настоящей главе мы ограничимся лишь приведением уравнения (100) к общепринятому виду, в котором пространство и время играют роль неких вспомогательных, опорных, эталонных характеристик. Чтобы иметь возможность перейти к традиционной записи уравнения (100), необходимо вначале ввести понятия термодинамических потока и «силы», как это делается в термодинамике необратимых процессов. Для практических целей в работе [17, с.37-53] рекомендуются восемь различных основных вариантов выбора потоков и сил. Из них здесь рассматриваются четыре наиболее употребительных. В случае распространения метрического и хронального веществ приходится принимать во внимание также некоторую их специфику (см. параграфы 1 и 2 гл. XV). Термодинамический поток, или просто поток, пропорционален количеству перенесенного вещества, характеризуемого экстенсором dE. Наибольший практический интерес представляют два весьма характерных выражения для потока. В первом случае количество вещества dE относится к единице площади поверхности dF и единице времени dt. Такой удельный поток обычно обозначается буквой J. Имеем J = dE/(dFdt) (107) Во втором случае количество вещества относится только к единице времени и обозначается буквой I. Получаем I = dE/dt (108) Потоки J и I, характеризующие конкретные условия переноса, широко применяются на практике: первый поток наиболее известен в теории теплопроводности, второй - в электротехнике, где именуется силой тока. Термодинамическая сила, или просто сила, ответственная за перенос вещества, пропорциональна разности интенсиалов (об этом уже говорилось). Применительно к силе тоже предусмотрены два характерных варианта, отражающих конкретные условия переноса. В первом случае сила обозначается через X, она представляет собой напор интенсиала δΡ, определяемый формулой (96). Имеем Х = - dР = - (Рс – Рп) (109) Вторая конкретная сила, обозначаемая буквой Υ, представляет собой градиент интенсиала dР/dх, то есть Y = - dP/dx (110) Знак минус в правых частях равенств (109) и (110) свидетельствует о том, что вещество распространяется от большего значения интенсиала к меньшему, при этом разности dР и dP оказываются отрицательными. Но потоки веществ J и I, а следовательно, и силы X и Υ должны быть положительными. Поэтому знак минус компенсирует отрицательные значения разностей δΡ и dP. Заметим, что термин «термодинамическая сила», или «сила», является общепринятым в термодинамике необратимых процессов. Однако он ничего общего не имеет с истинным понятием силы. Именно поэтому упомянутый термин был заключен нами в кавычки. В дальнейшем кавычки опускаются, но нужно не забывать об имеющейся в этом термине условности. Теперь мы располагаем уже тремя сходными по названию понятиями: сила, специфическая сила (интенсиал) и термодинамическая сила (разность или градиент интенсиала). Только первое понятие является силой в истинном смысле этого слова, два других понятия - это условные силы, они связаны с истинной силой соотношениями (94) и (97). Еще более условный смысл имеет понятие сила тока в электротехнике. Отметим также, что в принятых равенствах (107)-(110) по традиции в качестве опорных, эталонных использованы следующие пространственные и временные характеристики: площадь F, протяженность х и время t [ТРП, стр.141-142].
Date: 2015-05-09; view: 964; Нарушение авторских прав |