Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Нелинейность дифференциальных уравнений ОТ
В законах структуры и ее симметрии обращает на себя внимание удивительно симметричная, простая и удобная форма записи соответствующих дифференциальных уравнений. По-видимому, только такая форма и способна наиболее эффективно отразить все многообразие существующих в природе явлений структурной симметрии. Однако симметричная форма основных уравнений может навести на неверную мысль о том, что в них каждое данное свойство (Р, А, В, С, D и т.д.) линейно (в первой степени) зависит от всех экстенсоров и свойств более высоких порядков, а сами уравнения являются линейными дифференциальными уравнениями. Действительно, надо отдавать себе ясный отчет в том, что эта линейность является кажущейся. На самом деле в общем случае обсуждаемые дифференциальные уравнения в частных производных с математической точки зрения далеко не линейны из-за тех связей, которые имеются между упомянутыми свойствами и экстенсорами. Чтобы в этом убедиться, достаточно подставить в уравнения (54) значения свойств А, В и С из выражений (55), (56), (73), (74), (80) и (81) и принять во внимание, что приращения аргументов (экстенсоров) в действительности зависят от приращений интенсиалов. Это последнее обстоятельство выясняется при выводе уравнения пятого начала ОТ. В результате множители при производных от неизвестных функций Ρ содержат сами эти неизвестные функции и уравнения оказываются нелинейными. Следовательно, симметричная (по виду линейная) форма записи уравнений еще не означает линейности самих уравнений. Благодаря существенной нелинейности дифференциальных уравнений математический аппарат ОТ приобретает исключительные гибкость и универсальность [21, с.55]. Это замечание в равной мере относится к уравнениям всех семи начал ОТ. Принятая симметричная форма записи уравнений не случайна. Она потребовалась для того, чтобы специально выделить в уравнениях те их части, то есть те свойства А, В, С, D и т.д., которые подчиняются законам симметрии структуры типа (86), (88), (89) и т.д. При другой форме записи было бы значительно труднее установить эти законы [ТРП, стр.133].
Date: 2015-05-09; view: 499; Нарушение авторских прав |