Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Идеальная система
Нелинейные дифференциальные уравнения ОТ становятся линейными лишь в отдельных частных случаях, например когда свойства А в уравнениях типа (54) оказываются величинами постоянными, при этом структуры В, С, D и т.д. обращаются в нуль. Систему, обладающую такими свойствами, будем называть идеальной. Существует много различных определений понятия идеальной системы, из них логически оправданными можно считать два. Первое предполагает отсутствие в системе трения. Это понимание сыграло в науке свою положительную роль. Однако такого рода идеализация большого интереса для нас не представляет, ибо в ОТ сформулирован всеобщий закон диссипации - седьмое начало, поэтому пренебречь трением значит пренебречь одним из важнейших законов природы, то есть вместе с водой выплеснуть из ванны и ребенка. Второе определение к идеальным относит системы, у которых физические коэффициенты типа А, К и т.д. не зависят от экстенсоров и, следовательно, являются величинами постоянными. Именно такое определение мы будем использовать в качестве основного. Преимущество его заключается в том, что математический аппарат исследования предельно упрощается, вместе с тем все главные свойства системы, характеризуемые началами ОТ, не выпадают из поля зрения исследователя. Этого рода идеализация является значительно более общей и важной для теории и практики, чем первая; в частности, она позволяет крайне упростить изучение реальных систем с трением. Вторая идеализация, как и начала ОТ, может быть применена к любому количественному уровню мироздания (нано-, микро-, макро- и т.д.) и любому агрегатному состоянию системы (твердому, жидкому, газообразному). Разумеется, в действительности не существует идеальных систем, они являются предельной абстракцией. Однако в первом приближении допущение о постоянстве свойств типа А, К и т.д. сделать часто возможно. Возникающая в расчетах ошибка будет тем меньше, чем ближе реальная система подходит по своим свойствам к идеальной. В качестве простейшего примера проинтегрируем дифференциальное уравнение состояния (54) применительно к идеальной системе (А = const; n = 2). Имеем Р1 = А11Е1 + А12Е2 (92) Р2 = А21Е1 + А22Е2 где А12 = А21 Постоянные интегрирования положены равными нулю, так как при Е = 0 интенсиал системы Р = 0, что прямо следует из свойств парена (см. параграф 1, гл. XVII). В условиях одной степени свободы (A = const; n = l) из дифференциального уравнения (58) с учетом равенства (60) получаем Р = АЕ; Е = КР (93) Из уравнений (92) видно, что каждый интенсиал зависит от всех полных экстенсоров системы, при этом сохраняется симметрия во взаимном влиянии степеней свободы. Из выражения (93) следует, что у идеальной системы интенсиал пропорционален экстенсору, например, электрический потенциал пропорционален электрическому заряду, температура - энтропии, сила - деформации (закон Гука), момент силы - углу закручивания и т.д.; в трех последних примерах использованы не истинно простые, а условно простые экстенсоры (см. параграфы 5, 9 и 16 гл. XV) [ТРП, стр.133-135].
Date: 2015-05-09; view: 706; Нарушение авторских прав |