Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Первая концептуальная система химии: учение о составе вещества





Донаучный этап развития химия был представлен алхимией был ориентирован на поиски «философского камня», «эликсира долголетия», получение золота и серебра из других веществ. Родиной алхимии считается Древний Египет. Там в строжайшей тайне сохранялись способы выплавки металлов, получения сплавов для монет. Расширение торговли требовало научиться превращать свинец или железо в золото. Алхимическая направленность знаний и рецептов связывалась с астрологией и магией. Семь планет связывали с семью известными тогда металлами. Арабы, вторгшиеся в VII в. в Египет, перефразировали слово «хеми» в «аль хеми», так впоследствии и появилась алхимия. Джабир (европейское имя Гебер) считал, что все семь металлов образованы из серы и ртути. В XII—XIV вв. в связи с поисками эликсира, помогающего превращению этих элементов в золото, была открыта серная и азотная кислоты, изучены процессы брожения, появились вино и уксус. Постепенно возникали и иные цели. Так, Парацельс считал, что равновесие в организмах может быть достигнуто с помощью определенных химических соединений, использующих минералы. На основе серы, ртути и соли, используя их свойства — горючесть, летучесть и твердость, он создал ятрохимию. Каждому из этих свойств он сопоставил микрокосм человека — душу, дух и тело. Болезни вызывает избыток или недостаток каких-то элементов. И ятрохимия отделилась от алхимии. Во второй половине XVII в. период алхимии исчерпал себя. Но был накоплен опыт по различным превращениям веществ, конструированию приборов и технике экспериментов, были открыты новые вещества и новые металлы (платина, висмут), изучены необычные свойства многих веществ. И все более ощущалось, что существует какой-то предел превращаемости веществ. В то же время больших успехов достигла техническая химия — развивались металлургия, производство стекла, бумаги. Развитие ремесел, фармацевтики, промышленности требовало получения новых веществ. В это время возрождение идей атомизма П. Гассенди привело к формулировке понятия молекулы как мельчайшей частички, сохраняющей свойства вещества.

Первый по-настоящему научный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие структуры — атомы, или, как он их называл, minima naturalia. Эти частицы могли связываться друг с другом, образуя более крупные соединения — кластеры, по терминологии Бойля. Связь частиц в кластерах была достаточно прочной, и поэтому кластеры сами были невидимыми глазу кирпичиками для построения реальных физических тел. В зависимости от объема и формы кластеров, от того, находились ли они в движении или покоились, зависели и свойства природных тел. Сегодня мы вместо термина «кластер» используем понятие «молекула».

В рамках этого периода развивается и стехиометрия (от греч. stoicheion-основа, элемент и metred-измеряю) – учение о соотношениях - массовых или объемных реагирующих веществ. Термин "стехиометрия" ввел в 1793 И. Рихтер. В основе стехиометрии лежат законы сохранения массы и эквивалентов, Авогадро, Гей-Люссака, постоянства состава, кратных отношений.

Все законы стехиометрии обусловлены атомно-молекулярным строением вещества. Соотношения, в которых, согласно законам стехиометрии, вступают в реакцию вещества, называются стехиометрическими, также называются соответствующие этим законам соединения. Вещества, для которых наблюдаются отклонения от законов стехиометрии, называют нестехиометрическими. Отклонения от законов стехиометрии наблюдаются для конденсированных фаз и связаны с образованием твердых растворов (для кристаллических веществ), с растворением в жидкости избытка компонента реакции или термической диссоциацией образующегося соединения (в жидкой фазе, в расплаве).

Законы стехиометрии используют в расчетах, связанных с формулами веществ и нахождением теоретически возможного выхода продуктов реакции.

В период с середины XV11 в. до первой половины XIX в. учение о составе вещества представляло собой всю тогдашнюю химию. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне химического знания ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с использованием вновь открытых химических элементов.

Концепция химического элемента

Концепция химического элемента появилась в химии как результат стремления человека обнаружить первоэлемент природы. Корни решения данной проблемы уходят в Древнюю Грецию, где возникли учения о первоэлементах природы. Там же возникла и атомистическая концепция природы, возрожденная в Новое время химии Р. Бойлем. Именно он положил начало современному представлению о химическом элементе как о простом теле, пределе химического разложения вещества, переходящем без изменения из состава одного сложного тела в другое.

Но еще целый век после этого химики делали ошибки в выделении химических элементов. Дело в том, что, сформулировав понятие химического элемента, химики еще не знали ни одного из них. Стремясь получить элементы в чистом виде, они пользовались считавшимся тогда универсальным методом прокаливания, и окалину принимали за чистый элемент. Так что известные тогда металлы — железо, медь, свинец — принимали за сложные тела, состоявшие из соответствующего элемента и флогистона. Однако именно флогистонная теория, ложная по сути, оказалась двигателем многих исследований, приведших в итоге к истинным выводам.

Этот вывод был сделан Д.И. Менделеевым, доказавшим, что свойства химического элемента зависят от места данного атома в периодической системе. Сам Менделеев определял это место по атомной массе, но в XX в. было выяснено, что порядковый номер элемента зависит не от атомной массы, а от заряда атомного ядра и количества электронов. В настоящее время известно, что атом представляет собой сложную квантово-механическую систему, состоящую из положительно заряженного ядра и отрицательно заряженной электронной оболочки. Выяснены особенности строения электронных орбиталей атомов всех элементов и особая роль внешнего электронного уровня атома, от количества электронов в котором зависит реакционная способность элемента — химическая активность вещества, учитывающая как разнообразие реакций, возможных для данного вещества, так и их скорость. Наиболее активными с химической точки зрения являются элементы, имеющие минимальную атомную массу и 6—7 электронов на внешнем электронном уровне (фтор, хлор, кислород). Это связано с тем, что они стремятся достроить свою электронную оболочку путем присоединения недостающего числа электронов. Также большой реакционной способностью отличаются металлы, обладающие большой атомной массой и имеющие 1—2 электрона на внешнем электронном уровне (барий, цезий), стремящиеся отдать их для его достройки.

Современный окружающий человека мир заполнен многочисленными соединениями, образованными элементами периодической системы Менделеева. Во времена самого Менделеева было известно всего 62 химических элемента. В 30-е гг. XX в. таблица Менделеева включала 88 элементов, а всего в ней было 92 клетки (элемент под номером 92 — это уран). Сегодня науке известно 110 химических элементов (элемент 109 получил название мейтнерий, 110-й элемент еще не имеет официального названия), и химиков продолжает волновать вопрос, сколько всего элементов в таблице Менделеева.

Современная теория позволяет с большой вероятностью рассчитать стабильность сверхтяжелых элементов и предсказать их физические и химические свойства. Поэтому химики предполагают, что элементы с порядковыми номерами между 114-м и 164-м должны обладать неожиданно высокой стабильностью. Считается, что в районе этих порядковых номеров в периодической системе должен существовать так называемый островок стабильности, на котором возможно получение изотопов с периодом полураспада 108 лет. Верхняя граница стабильности должна приближаться к номеру 174. Если эти элементы будут получены, то их можно будет использовать в промышленном производстве и энергетике. Но для их синтеза нужны новые экспериментальные методы и технические средства.

Химическим элементом называют все атомы, имеющие одинаковый заряд ядра.

Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. Фредериком Содди, известным английским радиохимиком, лауреатом Нобелевской премии. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы.

Концепция химических соединений

Долгое время химики эмпирическим путем определяли, что относится к химическим соединениям, а что — к простым телам или смесям. Еще в начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое индивидуальное химическое соединение обладает строго определенным, неизменным составом — прочным притяжением составных частей (атомов) и тем самым отличается от смесей. Также Пруст установил, что всякое чистое вещество независимо от его происхождения и способа получения имеет один и тот же состав.

Теоретическое обоснование закона Пруста было дано Дж. Дальтоном в законе кратных отношений. Согласно этому закону состав любого вещества можно представить как простую формулу, а эквивалентные составные части молекулы — атомы, обозначавшиеся соответствующими символами, могли замещаться на другие атомы.

После этого долго считали, что состав химического соединения может быть только постоянным. Но дальнейшее развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими постоянный состав, существуют еще и соединения переменного состава, или бертоллиды. В результате были переосмыслены представления о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно. Но в XX в. была понята сущность химической связи, которая стала пониматься как вид взаимодействия между атомами и атомно-молекулярными частицами, обусловленный совместным использованием их электронов. Существуют ковалентные полярные, ковалентные неполярные ионные, водородные и металлические химические связи, отличающиеся характером физического взаимодействия частиц между собой.

Поэтому теперь под химическим соединением понимают определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой — молекулу, комплекс, монокристалл или иной агрегат.

Date: 2015-05-09; view: 1722; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию