Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Циркуляцией вектора напряженности магнитного поля по замкнутому контуру L (или просто циркуляцией вектора напряженности магнитного поля) называют интеграл
С учетом того что напряженность магнитного поля от бесконечно длинного проводника с током
Таким образом,
Если ток протекает вне контура (рис. 2.2), то в этом случае можно записать
Соотношение
Утверждение (2.3), что циркуляция вектора напряженности магнитного поля по замкнутому контуру L равна алгебраической сумме токов, охватываемых контуром, называется теоремой о циркуляциимагнитного поля или законом полного тока в интегральной форме. Таким образом, из закона полного тока вытекают следующие следствия: а) если направление обхода контура и направление тока в проводнике не связаны между собой правилом правого винта, то значение
сохранив величину, изменит знак; б) если контур, расположенный в магнитном поле, не охватывает ток или алгебраическая сумма токов внутри замкнутого контура равна нулю, то
Зная связь между векторомнапряженности H и вектором индукции B магнитного поля, можно записать закон полного тока в интегральной форме для циркуляции вектора индукции:
Так как 2.2. Применение закона полного тока для расчета магнитных полей 2.2.1. Напряженность поля бесконечно длинного соленоида Соленоидом называют катушку цилиндрической формы из провода, витки которой намотаны в одном направлении и прилегают плотно друг к другу. Магнитное поле соленоида представляет собой результат сложения полей, создаваемых несколькими круговыми токами, расположенными рядом и имеющими общую ось (рис. 2.6). Внутри соленоида силовые линии каждого отдельного витка имеют одинаковое направление. Поэтому принято считать поле бесконечно длинного соленоида (такого, у которого диаметр гораздо меньше длины – d<<L) однородным, существующим только внутри его.
Рассчитаем напряженность магнитного поля внутри соленоида, длина которого L, радиус витка R, число витков N, сила тока I. Будем считать, что в любой точке соленоида вектор H направлен параллельно оси. Для расчета напряженности воспользуемся законом полного тока в виде
Выберем замкнутый контур прямоугольной формы (рис. 2.7), участок 1-2 которого расположен внутри соленоида вдоль его оси. Левую часть выражения (2.7) можно представить в виде
где
Следовательно,
Правая часть выражения (2.16) может быть представлена так:
где n - число витков на единице длины соленоида;
I - величина тока в соленоиде. Таким образом, имеем
Откуда
Формула (2.8) согласуется с формулой, полученной с применением закона Био-Савара-Лапласа. Из полученного результата действительно видно, что напряженность магнитного поля внутри бесконечно длинного соленоида имеет одно и тоже значение, а следовательно, оно действительно однородно. Таким образом, действительно внутри бесконечно длинного соленоида напряженность магнитного поля практически везде одинакова. Она направлена вдоль оси соленоида в соответствии с правилом правого винта.
Date: 2015-05-09; view: 1417; Нарушение авторских прав |