Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Кольца Ньютона. Вычисление разности хода лучей и радиусов колец





Прихотливый вид интерференционных картин в тонких пленках объясняется, как сказано, случайными неравномерностями в толщине пленки. В пленке, имеющей вид клина, области одинаковой толщины вытянуты вдоль ребра клина и в соответствии с этим так же расположены темные и светлые (цветные) полосы интерференции.

Очень важным видоизменением опыта с клинообразной пленкой является опыт, произведенный еще в 1675 г. Английский физик и математик Исаак Ньютон (1643—1727) наблюдал цвета тонкой

 

Рис. 267 прослойки воздуха, заключенной между плоским стеклом и выпуклой поверхностью объектива астрономического рефрактора. Радиус кривизны выпуклой поверхности объектива в опыте Ньютона был около 10 м, поэтому толщина прослойки воздуха между плотно сжатыми стеклами очень медленно и правильно возрастала от места соприкосновения стекол (где она равна нулю) к наружным частям объектива.

Если смотреть на такую систему, то темное место соприкосновения обоих стекол оказывается окруженным светлой кольцевой полосой, которая постепенно переходит в темную, вновь сменяется светлой и т. д. По мере увеличения диаметра кольца толщина воздушной прослойки возрастает неравномерно, воздушный клин становится все круче и соответственно ширина кольцевых полос, т. е. расстояние между двумя соседними минимумами, становится меньше. Такова картина, наблюдаемая в монохроматическом свете; в белом свете наблюдается система цветных колец, постепенно переходящих друг в друга. По мере удаления от центрального темного пятна цветные полосы становятся все уже и белесоватое благодаря перекрытию цветов, пока, наконец, не исчезают всякие следы интерференционной картины.

На основании изложенного выше нетрудно понять, почему интерференционная картина имеет в данном случае вид системы концентрических колец. Места равной толщины в воздушной прослойке, которые соответствуют местам с одинаковой разностью хода световых волн, имеют форму окружностей. По этим окружностям и располагаются места равной интенсивности в интерференционной картине.

Удобное расположение приборов, позволяющее наблюдать и промерять кольца Ньютона, изображено на рис. 267. На столике микроскопа с небольшим увеличением расположено плоское стекло, сложенное с линзой малой кривизны. Наблюдение ведется через микроскоп по направлению, перпендикулярному к плоскости стекла. Для того чтобы освещающий свет также падал перпендикулярно к плоскости стекла, заставляют свет источника отражаться от стеклянной пластинки, поставленной под углом 45° к оси микроскопа. Таким образом, интерференционная картина рассматривается сквозь эту стеклянную пластинку. Практически пластинка не мешает наблюдению колец, ибо сквозь нее проходит вполне достаточно света. Для усиления освещения можно применять конденсор. Источником света служит горелка, пламя которой окрашено парами натрия (монохроматический свет), или лампочка накаливания, которую можно прикрывать цветными светофильтрами.

Для того чтобы использовать интерференционные явления, в частности кольца Ньютона для измерения длины волны, надо подробнее рассмотреть условия образования максимумов и минимумов света.

При падении света на пленку или тонкую пластинку часть света проходит сквозь нее, а часть отражается. Предположим, что монохроматический свет длины волны l падает на пластинку перпендикулярно к ее поверхности. Будем рассматривать малый участок пластинки, считая его плоскопараллельным. На рис. 268 изображен ход лучей в пластинке, причем для наглядности лучи изображены не вполне перпендикулярными к ней. В отраженном свете имеем луч 1, отраженный от верхней поверхности пластинки и луч 2, отраженный от нижней поверхности. В проходящем — луч 1', прямо прошедший через пластинку и луч 2', отразившийся по одному разу от нижней и от верхней поверхностей. Рассмотрим сначала проходящие лучи. Лучи 1' и 2' обладают разностью хода, так как первый прошел через нашу пленку один раз, а второй — три раза. Образовавшаяся разность хода при нормальном падении света есть AB+BC+CD—АВ=ВС+CD=2h, где h — толщина пластинки. Если эта разность хода равна целому числу волн, т. е. четному числу полуволн, то лучи усиливают друг друга; если же разность хода равна нечетному числу полуволн, то лучи взаимно ослабляются. Итак, максимумы и минимумы получаются в тех местах пластинки, толщина которых h удовлетворяет условию 2h=nλ/2, причем минимумы соответствуют нечетному значению n=1, 3, 5,..., максимумы соответствуют четному значению n=2, 4,... Таковы выводы для проходящего света.


Рис. 268. Ход отраженных и проходящих лучей при двукратном отражении в пленке

В отраженном свете разность хода между лучами 1 и 2 при нормальном падении света есть AB+BC=2h, т. е. такая же, как и для проходящего света. Можно было бы думать, что и в отраженном свете максимумы и минимумы будут на тех же местах пластинки, что и в проходящем свете. Однако это означало бы, что места пластинки, которые меньше всего отражают света, меньше всего и пропускают его. В частности, если бы вся пластинка имела одну и ту же толщину и притом такую, что 2h равно нечетному числу полуволн, то такая пластинка давала бы и минимальное отражение, и минимальное пропускание. Но так как мы предполагаем, что пластинка не поглощает света, то одновременное ослабление и отраженного, и пропущенного света невозможно. Само собой разумеется, что в непоглощающей пластинке свет отраженный должен дополнять свет прошедший, так что темные места в проходящем свете соответствуют светлым в отраженном и наоборот. И действительно, опыт подтверждает это заключение.

В чем же ошибочность нашего расчета интерференции отраженных световых волн? Дело в том, что мы не учли различия в условиях отражения. Некоторые из отражений имеют место на границах воздух — стекло, а другие на границах стекло — воздух (если речь идет о тонкой стеклянной пластинке в воздухе). Это различие приводит к возникновению дополнительной разности фаз, которая соответствует дополнительной разности хода, равной λ/2. Поэтому полная разность хода для лучей, отраженных от верхней и нижней поверхностей пластинки толщиной h, равняется 2h+λ/2. Места минимумов соответствуют условию 2h+2λ/2 = mλ/2.

где m — нечетное число; места максимумов — четным значениям m. Следовательно, максимумы и минимумы получаются в тех местах пластанки, толщина которых h удовлетворяет условию 2h = (m-1)λ/2 = nλ/2, причем (m-1) обозначено через n. Минимумы соответствуют четным значениям n=0, 2, 4,..., максимумы соответствуют нечетным значениям n=1, 3, 5,...

Сопоставим результаты, полученные для определения положения максимумов и минимумов в проходящем и отраженном свете. Положения максимумов и минимумов соответствуют толщине пленки, определяемой из условия: 2h=nλ/2.

Таким образом, области максимумов в проходящем свете соответствуют областям минимумов в отраженном и, наоборот.

Применительно к кольцам Ньютона, которые обычно наблюдаются в отраженном свете (§ 126), получаем, что места максимумов соответствуют нечетным значениям n=1, 3, 5,..., а места минимумов — четным n=0, 2, 4,... Центральный (нулевой n=0) минимум имеет вид темного кружка, следующее первое темное кольцо соответствует

n=2, второе n=4 и т. д. Вообще номер N темного кольца связан с числом я соотношением N=n/2. Номер N светлого кольца выражается через n формулой N=(n+1)/2.

Вместо определения толщины h того места воздушной прослойки, которое соответствует кольцу номера N, удобнее измерять диаметр или радиус соответствующего кольца. Из рис. 269 следует: R2=(R—h)2+r2 и, следовательно, толщина прослойки h связана с радиусом кольца r и радиусом линзы R соотношением (2R-h)h=r2

Для опытов с кольцами Ньютона пользуются линзами о очень большим радиусом R (несколько метров). Поэтому можно пренебречь величиной ft по сравнению с 2R и упростить последнее соотношение, записав: 2Rh=r2 или 2h=r2/R.


Итак, для определения длины волны l с помощью колец Ньютона имеем 2h=r2/R

Если измеряются радиусы темных колец, то номер кольца N=n/2. В таком случае длина волны выразится формулой

λ = r2N /NR, где rN есть радиус N-го темного кольца.

 

Рис. 269. К расчету радиусов колец Ньютона

 

Проводя измерения радиусов светлых колец, мы должны иметь в виду, что N={n+1)/2. В соответствии с этим получаем соотношение λ = 2 r2N /(2N-1)R, где rN есть радиус N-ro светлого кольца.


 

20. Дифракция света. Дифракция Фраунгофера и Френеля. Принцип Гюйгенса–Френеля.

Дифракция – совокупность явлений, наблюдаемых при распространении света вблизи границ прозрачных и непрозрачных тел сквозь малые отверстия и щели, через различные препятствия, связанных с отклонением от законов геометрической оптики. При дифракции происходит перераспределение светового потока в пространстве.

При интерференции наблюдается результат суперпозиции волн, возбужденных конечным числом дискретных когерентных источников.

При дифракции света наблюдается суперпозиция световых волн, возбуждаемых когерентными источниками, расположенных непрерывно.

Две схемы наблюдения дифракции:

- дифракция Фраунгофера — это дифракция на отверстии, которое для точки наблюдения открывает заметно меньше одной зоны Френеля. Это условие выполнено, если точка наблюдения и источник света находятся достаточно далеко от отверстия.

 

 

дифракция Френеля — это дифракция в случае, когда отверстие открывает (или препятствие закрывает) для точки наблюдения несколько зон Френеля. Если открыто много зон Френеля, то дифракцией можно пренебречь, и мы оказываемся в приближении геометрической оптики.

Принцип Гюйгенса (к XVIIв.) каждая точка, до которой доходит световая волна, служит центром вторичных волн, огибающая этих волн даёт положение волнового фронта по следующему моменту времени.

Френель для количественного решения задач о дифракции дополнил принцип Гюйгенса положением о интерференции вторичных волн.

Принцип Гюйгенса — Френеля формулируется следующим образом: Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

- амплитуда волны точечного источника,

- сигнал, излучающий повторяемость dS

 

Явление дифракции объясняется с помощью принципа Гюйгенса, согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.


Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 256). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

Рис. 256

Явление дифракции характерно для волновых процессов. Поэтому если свет является волновым процессом, то для него должна наблюдаться дифракция, т. е. световая волна, падающая на границу какого-либо непрозрачного тела, должна огибать его (проникать в область геометрической тени). Из опыта, однако, известно, что предметы, освещаемые светом, идущим от точечного источника, дают резкую тень и, следовательно, лучи не отклоняются от их прямолинейного распространения. Почему же возникает резкая тень, если свет имеет волновую природу? К сожалению, теория Гюйгенса ответить на этот вопрос не могла.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

Согласно принципу Гюйгенса - Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии - такая же, как при отсутствии экрана.

Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) результирующей волны в любой точке пространства, т. е. определить закономерности распространения света. В общем случае расчет интерференции вторичных волн довольно сложный и громоздкий, однако, как будет показано ниже, для некоторых случаев нахождение амплитуды результирующего колебания осуществляется алгебраическим суммированием.

 







Date: 2015-05-08; view: 4505; Нарушение авторских прав



mydocx.ru - 2015-2024 year. (0.013 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию