Полезное:
Как сделать разговор полезным и приятным
Как сделать объемную звезду своими руками
Как сделать то, что делать не хочется?
Как сделать погремушку
Как сделать так чтобы женщины сами знакомились с вами
Как сделать идею коммерческой
Как сделать хорошую растяжку ног?
Как сделать наш разум здоровым?
Как сделать, чтобы люди обманывали меньше
Вопрос 4. Как сделать так, чтобы вас уважали и ценили?
Как сделать лучше себе и другим людям
Как сделать свидание интересным?
Категории:
АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника
|
Основное уравнение квантовой механики
1926г. Уравнение Шредингера. m- масса частицы. E- полная энергия частицы. - пси-функция (волновая функция). - оператор Лапласа. С помощью описывается поведение микрочастицы в данный момент времени. , так как это поведение носит вероятностный характер, то с помощью надо умерь рассчитывать вероятность обнаружения микрочастицы в данном объеме пространства. А, так как вероятность действительная и положительная, то за меру вероятности берут не саму , а квадрат ее модуля. - плотность вероятности (вероятность [W] обнаружения частицы в данный момент времени в единичном объеме) ; - вероятность достоверного события. Итак. Решив уравнение, получаем значение ; зная ее можем рассчитать вероятность нахождения частицы в данный момент времени в данном объеме пространства. Чтобы была объективной характеристикой поведения микрочастицы, она должна обладать следующими свойствами: 1. Непрерывность. Разрыв может приводить к неверным результатам при расчете вероятности. 2. Однозначность, чтобы не было неоднозначности при расчете вероятности. 3. Конечность, потому что вероятность не может быть больше 1.
В теории дифференциального уравнения подобного типа (2-го порядка частных производных) доказывается, что решения, удовлетворяющие свойствам непрерывности, имеют место только при определенных значениях параметра, входящего в это уравнение. Таким параметром в данном уравнении является Е (энергия микрочастицы). Следовательно, из уравнения Шредингера без каких-либо постулатов вытекает дескретный ряд значений полной энергии микрочастицы.
Применение уравнения (1) к атому водорода. Решение уравнения дает: Date: 2015-05-08; view: 440; Нарушение авторских прав |